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1 Outline

Risk is a strategy game developed by Albert Lamorisse in 1957. It is a highly competitive
game, in which players battle for control over regions of a world map by stationing units
within their territories in order to launch attacks on neighbouring territories that are not
in their control.

2 Existing solutions

For playing games over an internet connection, multiple solutions already exist. These can
roughly be broken down into those that are centralised and those that are decentralised,
although many decentralised systems rely on federated or centralised communications for
peer discovery.

2.1 Centralised

In highly centralised networks, traffic is routed to a number of servers that are operated by
the same organisation who maintains the game or service. This is the current standard for
the majority of the internet: in fact, this is the methodology used by the official version
of Risk, playable as an app.

Without patching the executables, there is no way for a user to run their own servers, or
to connect to a third party’s server. This has two main advantages:

e Moderation. The developers can enforce their own rules through some form of
EULA, and this would be properly enforceable, as if a user is banned from the
official servers, there is no alternative.

e Security. The server acts as a trusted party, and validates all communications from
players. Hence, players cannot subvert a (properly implemented) service’s protocol.

2.2 Peer-to-peer networks

In peer-to-peer (P2P) networks, traffic may be routed directly to other peers, or servers
may be operated by third parties (sometimes called "federated networks"). This form
of communication is still popular in certain games or services, for example BitTorrent is
primarily a P2P service; and titles from the Counter-Strike series are federated, with a
wide selection of third party hosts.

The main advantage of peer-to-peer networks over centralised networks is longevity. Games
such as Unreal Tournament 99 (which is federated) still have playable servers, as the
servers are community-run, and so as long as people still wish to play the game, they will
remain online (despite the original developers no longer making any profit from the title)
(Eatsleeput.com)|, 2022).

However, security can often be worse in fully peer-to-peer networks than that of fully
centralised networks. Peers may send malicious communications, or behave in ways that
violate the general rules of the service. As there is no trusted server, there is no easy way
to validate communications to prevent peers from cheating.



Some peer-to-peer services try to address issues with security. In file-sharing protocols
such as BitTorrent, a tracker supplies hashes of the file pieces to validate the file being
downloaded (Cohen| 2017)). However, the downside of this approach is that a trusted
party (in this case the tracker) is still required. A malicious tracker could supply bad
hashes, or an outdated tracker may expose the peer to security vulnerabilities.

2.3 Untrusted setups
Currently, there exists an online centralised version of the board game Risk.

We aim to apply bit-commitment schemes and zero-knowledge proof protocols to an online
P2P variant of Risk, to allow peers to play the game whilst preventing cheating and needing
no trusted parties. The variant of interest is the "fog of war" variant, where a player
cannot see the unit counts of regions besides those that they own or are neighbouring.

3 Literature review

Centralised systems can securely perform the generation of random values, through using
a cryptographically secure random number generator on the server-side, and distributing
the values to the clients. This is how dice rolls are processed in centralised online games.
However, in a P2P system, something else must be done to simulate the randomness.

For dice rolling, we want that
e No peer can change the probable outcome of the dice (random),
e No peer can deny having rolled the dice (non-repudiation).

We apply the concept of bit commitment schemes to form these guarantees.

3.1 Bit commitment schemes

Bit commitment schemes provide a mechanism for one party to commit to some hid-
den value and reveal it later. This can be achieved through the use of commutative
cryptographic algorithms and with one-way functions.

Commutative cryptography

Shamir, Rivest and Adleman! (1981]) provides a protocol using bit commitment to play
poker. They offer a bit commitment scheme using commutative encryption algorithms
based on modular arithmetic. This scheme works by each player encrypting cards, and
decrypting in a different order as to obscure the value of the actual cards until all players
have decrypted.

Many encryption schemes are not commutative however. One alternative is to use some
well-known one-way function, such as SHA, with randomly generated salts.

Bit commitment with one-way functions

Bit commitment schemes can also be implemented using one-way functions:

1. The first party decides on the value m to be committed to.



2. The first party generates some random value r.

3. The first party generates and publishes some value ¢ = H(m,r), where H is an
agreed-upon public one-way function.

4. The first party publishes m and r to the second party some time later.
5. The second party computes ¢ = H(m,r) and validates that ¢ = ¢.

Blum| (1983)) provides a protocol for flipping fair coins across a telephone, which is
isomorphic to selecting a random value from a set of two values. This cannot be simply
repeated though to generate numbers in the range of 1-6, as 6 is not a power of 2.

However, a similar protocol can be used where each player commits to a single value
x € Zg. As the distribution of outcomes of addition in the group Z, is fair, we can then
sum the values of x committed to by both players to deduce a final value for the roll. To
decrease the amount of communications required for rolling a number of dice, a vector of
values can be used.

This protocol relies only on the ability for one party to produce random numbers. We can
consider the Zg-set on Zg: upon one party selecting x € Zg, the other party’s selection is
from the group x - Zg = {x +0,...,x 4+ 5} = Zg. So, the potential outcomes only require
one party to select randomly.

If both parties were to collude and generate non-randomly, this protocol falls through.
A potential way around this is to involve other players in the protocol: the same rule
applies of only a single player needs to be selecting randomly to produce random outputs.
Therefore, so long as there are non-colluding players, this would protect against basic
collusion.

3.2 Zero-knowledge proofs

Zero-knowledge proofs form a subset of minimum disclosure proofs, and beyond that, a
subset of interactive proofs. Zero-knowledge proofs are defined by three axioms:

e Completeness. If the conjecture is true, an honest verifier will be convinced of its
truth by a prover.

e Soundness. If the conjecture is false, a cheating prover cannot convince an honest
verifier (except with some small probability).

e Zero-knowledge. This is the condition for a minimum disclosure proof to be
considered zero-knowledge. If the conjecture is true, the verifier cannot learn any
other information besides the truthfulness.

Zero-knowledge proofs are particularly applicable to the presented problem. They primarily
solve two problems:

e The disclosure of some information without leaking other information,
e The proof presented can only be trusted by the verifier, and not by other parties.

We can further formalise the general description of a zero-knowledge proof. Mohr| (2007)
provides a common formalisation of the concept of a zero-knowledge proof system for a
language L by stating that



e For every x € L, the verifier will accept x following interaction with a prover.

e For some polynomial p and any = ¢ S, the verifier will reject x with probability at

1
least R

e A verifier can produce a simulator S such that for all z € L, the outputs of S(z) are
indistinguishable from a transcript of the proving steps taken with the prover on z.

The final point describes a proof as being computationally zero-knowledge. Some stronger
conditions exist, which describe the distributions of the outputs of the simulator versus
the distributions of the outputs of interaction with the prover.

e Perfect. A simulator produced by a verifier produces outputs that are distributed
identically to real transcripts.

e Statistical. A simulator produced by a verifier gives transcripts distributed identi-
cally, except for some constant number of exceptions.

Some proofs described are honest-verifier zero-knowledge proofs. In these circumstances,
the verifier is required to act in accordance with the protocol for the simulator distribution
to behave as expected. We consider verifiers as honest, as it appears they may only impede
themselves by acting dishonestly.

Games as graphs

The board used to play Risk can be viewed as an undirected graph. Each region is a node,
with edges connecting it to the adjacent regions. For convenience, we also consider the
player’s hand to be a node, which has all units not in play placed upon it.

Furthermore, the actions taken when playing the game can be seen as constructing new
edges on a directed weighted graph. This makes us interested in the ability to prove that
the new edges conform to certain rules.

The main game protocol can be considered as the following graph mutations for a player
P:

e Reinforcement. A player updates the weight on some edges of the graph that lead
from the hand node Hp to region nodes Ry,..., R, in their control.

— Any adjacent players will then need to undergo proving the number of units on
neighbouring regions.

e Attack. Player P attacks Rp from R,4. In the event of losing units, the player
updates the edge on the graph from R4 to the hand node Hp.

In the event of winning the attack, the player updates the edge from R4 to Rp to
ensure some non-zero amount of units is located in the region.

e Unit movement. The player updates an edge from one region R; to another
neighbouring region Rj.

The goal is then to identify ways to secure this protocol by obscuring the edges and
weights, whilst preventing the ability for the player to cheat.



Graphs & ZKPs

Goldreich, Micali and Wigderson| (1991) identifies methods to construct zero-knowledge
proofs for two graphs being isomorphic or non-isomorphic.

Identifying Risk as a graph therefore enables us to construct isomorphisms as part of
the proof protocol. For example, when a player wishes to commit to a movement, it is
important to prove that the initial node and the new node are adjacent. This can be
proven by communicating isomorphic graphs, and constructing challenges based on the
edges of the original graph.

Adjacency proofs

Proving adjacency of two nodes is akin to proving isomorphism of two graphs. A protocol
using challenges could be constructed as follows:

1. The prover commits a new edge between two nodes.
2. The prover constructs an isomorphic graph to the game, and encrypts the edges.
3. The verified challenges either:

e That the graphs are isomorphic.

e That the new edge is valid.

4. The prover sends a total decryption key for the graph’s nodes, to prove isomorphism
to the game board; or a decryption key for the new edge to the isomorphism, to
prove adjacency.

These challenges restrict the ability for the prover to cheat: if the two nodes they
are committing to are not adjacent, either the prover will need to commit an invalid
isomorphism (detected by challenge 1), or lie about the edge they have committed (detected
by challenge 2).

Selection between two challenges is the ideal number of challenges to use, as the probability
of cheating being detected is % Using more challenge options (e.g, n) means the likelihood
of the prover cheating a single challenge reduces to % This would require much larger
numbers of communications to then convince the verifier to the same level of certainty.

Adjacency proofs are necessary to ensure that players move units fairly.

Cheating with negative values

Zerocash is a ledger system that uses zero-knowledge proofs to ensure consistency and
prevent cheating. Ledgers are the main existing use case of zero-knowledge proofs, and
there are some limited similarities between ledgers and Risk in how they wish to obscure
values of tokens within the system.

Publicly-verifiable preprocessing zero-knowledge succinct non-interactive arguments of
knowledge (zk-SNARKSs) are the building blocks of Zerocash (Ben Sasson et al., 2014)), and
its successor Zcash. A zk-SNARK consists of three algorithms: KeyGen, Prove, Verify.

These are utilised to construct and verify transactions called POURs. A POUR takes, as input,
a certain "coin", and splits this coin into multiple outputs whose values are non-negative



and sum to the same value as the input. The output coins may also be associated with
different wallet addresses.

Zerocash then uses zk-SNARKSs as a means to prove that the value of the inputs into a
POUR is the same as the value of the outputs. This prevents users from generating "debt",
or from generating value without going through a minting process (also defined in the
Zerocash spec).

Ensuring consistency of weights

A similar issue appears in the proposed system: a cheating player could update the weights
on their graph to cause a region to be "in debt". Therefore, we need the protocol to
ensure players prove that the sum of all edges is equal to how many units the player has
in play (a well-known value).

Additive homomorphic cryptosystems

Some cryptosystems admit an additive homomorphic property: that is, given the public
key and two encrypted values o1 = E(m;y), 09 = E(my), the value o1 + 09 = E(my + my)
is the ciphertext of the underlying operation.

Paillier| (1999) defined a cryptosystem based on residuosity classes, which expresses
this property. Damgard, Jurik and Nielsen| (2003) demonstrates an honest-verifier zero-
knowledge proof for proving a given value is 0. Hence, clearly, proving a summation
a + b = v can be performed by proving v —a — b = 0 in an additive homomorphic
cryptosystem.

So, using some such scheme to obscure edge weights should enable verification of the edge
values without revealing their actual values.

Reducing communication

In the presented algorithms, interaction is performed fairly constantly, leading to a large
number of communications. This will slow the system considerably, and make proofs
longer to perform due to network latency.

An alternative general protocol is the Y-protocol (Groth), 2004). In the 3-protocol, three
communications occur:

e The prover sends the conjecture.
e The verifier sends a random string.
e The prover sends some proofs generated using the random string.

This reduces the number of communications to a constant, even for varying numbers of
challenges.

The Fiat-Shamir heuristic (Fiat and Shamir, [1987) provides another method to reduce
communication by constructing non-interactive zero-knowledge proofs using a random
oracle. For ledgers, non-interactive zero-knowledge proofs are necessary, as the ledger
must be resilient to a user going offline. However, in our case, users should be expected to
stay online for an entire session of Risk, and each session is self-contained. So this full
transformation is not necessary.



Set membership proofs

Another approach to the problem is to use set membership, which is a widely considered
problem in zero-proof literature. In this case, each region would be associated with a set
of units from a public "pool" of units. Then, a player needs to prove the cardinality of
a set, and the uniqueness/distinctness of its members. A number of constructs exist for
analysing and proving in obscured sets.

Accumulators

Defined by Benaloh and de Mare (1994), accumulators form a subset of one-way hash
functions that satisfy a quasi-commutative property: that is, for some hash function h,

h(h(z1,y1), y2) = h(h(z1,y2), Y1)

Benaloh and de Mare| (1994) also proved that such functions exist, by providing an example
based on modular arithmetic. They then used these to construct set membership proofs
as follows:

o Take sq,...,s, a set of users who wish to identify each other, and P, a public key.

e Each user s; computes z = h(h(h(Py, $1),...),s,) and z; = h(h(h(Py, $1),- .- ), Sn)
omitting s;.

e For a user to validate their membership to another user, they publish (z;, s;).

Merkle trees

Merkle trees (Merkle, [1988]) provide an alternative way of proving set membership, that
is more space efficient than accumulators, and doesn’t require special hashing functions
(any one-way function will work). A Merkle tree stores the hashes of some data in the leaf
nodes, and each node above stores the hash of the two nodes below it. The commitment
is then the hash of the topmost node.

With this scheme, the data stored in the leaf nodes is totally obscured. However, the
constructor of the tree can demonstrate to another user the presence of some data in the
tree by revealing the hashes of a subset of the other nodes in the tree. They can also reveal
the tree’s structure without revealing any contents by revealing all hashes constituting
the tree.

Whilst this would be useful in a Risk version in which a player never exposed their unit
count, and simply wagered units on an attack; it doesn’t apply well to the intended
scenario of privately communicating unit counts, as the hash function used is well-known,
and so proofs to a single player can easily be replicated by a malicious verifier to other
players in the game.

To overcome this issue we want to devise some zero-knowledge system for proving set size.
It is then beneficial to consider a public set U containing all of a player’s possible units.

Blind signatures

Chaum| (1983) describes a process of a blind signature, in which a message is signed
without the contents being revealed to the signer. This requires some signing function S
which commutes with an encrypting function F, i.e E~Y(S™Y(E(m))) = S~(m).



Camenisch, Chaabouni and shelat| (2008)) demonstrates how blind signatures can be used
to construct zero-knowledge set membership proofs for some element ¢ in a public set @,
using pairing-based cryptography.

Blind signatures can also be performed with RSA (Bellare et al., [2003). In RSA-based
blind signatures, the signing party computes primes pa, ¢4 and exponents d, e such that
(m?)® =m mod paga. The 2-tuple (paqa, e) is the public key, and is released publicly.
The other party computes a random value R, and computes and publishes B = m - R¢
mod paqa for some message m. The signing party then replies with B¢ = (m-R¢)? = m®- R
mod paqa, so that the other party can then extract m? as R is known only to them.
Due to the discrete logarithm problem, determining the signing key d from this is not
computationally feasible. Similarly, it is not feasible for the signer to determine m, as R
is not known to them.

RSA blinding can incur a security risk, as by using the same keys to sign and encrypt, a
player can be tricked into revealing their private key through a chosen-plaintext attack.

4 Implementation

The implementation provided uses WebSockets as the communication primitive. This is
therefore a centralised implementation. However, no verification occurs in the server code,
which instead simply "echoes" messages received to all connected clients.

Despite this approach being centralised, it does emulate a fully peer-to-peer environment,
and has notable benefits:

e It is faster to develop, use, and test than using a physical system such as mail;
e There is no need for hole-punching or port-forwarding;
e WebSockets are highly flexible in how data is structured and interpreted.

In particular, the final point allows for the use of purely JSON messages, which are readily
parsed and processed by the client-side JavaScript.

4.1 Message structure

Messages are given a fixed structure to make processing simpler. Each JSON message
holds an author field, being the sender’s ID; a message ID to prevent replay attacks and
associate related messages; and an action, which at a high level dictates how each client
should process the message.

The action more specifically is one of ANNOUNCE, DISCONNECT, KEEPALIVE, RANDOM, and
ACT. The first three of these are used for managing the network by ensuring peers are
aware of each other and know the state of the network. RANDOM is designated to be used
by the shared-random-value subprotocol defined later. ACT is used by players to submit
actions for their turn during gameplay.

Each message is also signed to verify the author. This is a standard application of RSA.
A hash of the message is taken, then encrypted with the private key. This can be verified
with the public key.

RSA keys are accepted by peers on a first-seen basis.



4.2 Paillier

Paillier requires the calculation of two large primes for the generation of public and private
key pairs. ECMAScript typically stores integers as floating point numbers, giving precision
up to 2%%. This is clearly inappropriate for the generation of sufficiently large primes.

In 2020, ECMAScript introduced BigInt (TC39,2020), which are, as described in the spec,
"arbitrary precision integers". Whilst this does not hold true in common ECMAScript
implementations (such as Chrome’s V8), these "big integers" still provide sufficient
precision for the Paillier cryptosystem, given some optimisations and specialisations are
made with regards to the Paillier algorithm and in particular the modular exponentiation
operation.

It must be noted that BigInt is inappropriate for cryptography in practice, due to the
possibility of timing attacks as operations are not necessarily constant time (TC39, 2020).
In particular, modular exponentiation is non-constant time, and operates frequently on
secret data. A savvy attacker may be able to use this to leak information about an
adversary’s private key.

4.3 Modular exponentiation

As BigInt’s V8 implementation does not optimise modular exponentiation, we employ the
use of addition chaining, as described in |[Schneier| (1996). Addition chaining breaks a modu-
lar exponentiation into repeated square-and-modulo operations, which are computationally
inexpensive to perform.

The number of operations is dependent primarily on the size of the exponent. For an
exponent of bit length L, somewhere between L and 2L multiply-and-modulo operations
are performed, which gives overall a logarithmic time complexity supposing bit-shifts and
multiply-and-modulo are constant time operations.

4.4 Generating large primes

I chose to use primes of length 2048 bits. This is a typical prime size for public-key
cryptography, as this generates a modulus n = pq of length 4096 bits.

Generating these primes is a basic application of the Rabin-Miller primality test (Rabin,
1980). This produces probabilistic primes, however upon completing sufficiently many
rounds of verification, the likelihood of these numbers actually not being prime is dwarfed
by the likelihood of hardware failure.

4.5 Public key

In the Paillier cryptosystem, the public key is a pair (n, g) where n = pq for primes p, g
satisfying ged(pg, (p — 1)(¢ — 1)) = 1 and g € Z,. We restrict the range of plaintexts m
tom < n.

The Paillier cryptosystem is otherwise generic over the choice of primes p,q. However,
by choosing p, ¢ of equal length, the required property on pg, (p — 1)(¢ — 1) coprime is
guaranteed.

Proposition 4.1. For p,q prime of equal length, ged(pq, (p — 1)(¢ — 1)) = 1.
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Proof. Without loss of generality, assume p > ¢. Suppose ged(pg, (p — 1)(¢ — 1)) # 1.
Then, ¢ | p — 1. However, the bit-lengths of p, ¢ are identical. So %(p —1) < q. This is
a contradiction to ¢ | p— 1 (as 2 is the smallest possible divisor), and so we must have
ged(pg, (p—1)(g — 1)) = 1 as required. O

As the prime generation routine generates primes of equal length, this property is therefore
guaranteed. The next optimisation is to select g =1 + n.

Proposition 4.2. 1 +n € Z,.

Proof. We see that (1 +n)" =1 mod n? from binomial expansion. So 1+ n is invertible
as required. N

The selection of such g is ideal, as the binomial expansion property helps to optimise
exponentiation. Clearly, from the same result, ¢g”* = 1+mn. This operation is far easier to
perform, as it can be performed without having to take the modulus to keep the computed
value within range.

4.6 Encryption

The ciphertext is, in general, computed as ¢ = ¢g™r" mod n? for r < n some random
secret value. To make this easier to compute, we compute the equivalent value ¢ = (r"
mod n?) - (¢™ mod n?) mod n?.

4.7 Private key

The private key is the value of the Carmichael function A = A\(n), defined as the exponent
of the group Z. From the Chinese remainder theorem, A\(n) = A(pq) can be computed as
lem(A(p), A(¢)). From Carmichael’s theorem, this is equivalent to lem(¢p(p), ¢(q)), where
¢ is Euler’s totient function. Hence, from the definition of Euler’s totient function, and as

p,q are equal length, A = (p —1)(¢ — 1) = ¢(n).

We are also interested in the ability to compute 1 = A~! mod n as part of decryption.
Fortunately, this is easy, as from Euler’s theorem, A*™ =1 mod n, and so we propose
p = X™=1 modn. As ¢(n) is well-known to us, we get u = AP~D@Y mod n, a
relatively straight-forward computation.

4.8 Decryption

Let ¢ be the ciphertext. The corresponding plaintext is computed as m = L(¢* mod n?)-u
mod n, where L(z) = ”T_l This is relatively simple to compute in JavaScript.

4.9 Proof system

The proof system is that of Damgard, Jurik and Nielsen| (2003). The authors give a method
to prove knowledge of an encrypted value. The importance of using a zero-knowledge
method for this is that it verifies knowledge to a single party. This party should be an
honest verifier: this is an assumption we have made of the context, but in general this is
not true, and so this provides an attack surface for colluding parties.
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The proof system presented is an interactive proof for a given ciphertext ¢ being an

encryption of zero.
| Prover I | Verifier I

r € Z; withe = "
mod n?

Choose random r* € Z

a= (r*)" mod n?

| Choose random e

*.€

z=7r*® modn

Verify z, ¢, a coprime to n
Verify 2" = ac® mod n?

A proof for the following homologous problem can be trivially constructed: given some
ciphertext ¢ = ¢™r™ mod n?, prove that the text cg™™ mod n? is an encryption of 0.
The text cg~™ is constructed by the verifier. The prover then proceeds with the proof
as normal, since cg~™ is an encryption of 0 under the same noise as the encryption of m
given.

4.10 Implementation details

4.11 Application to domain

Players should prove a number of properties of their game state to each other to ensure
fair play. These are as follows.

1. The number of reinforcements placed during the first stage of a turn.
2. The number of units on a region neighbouring another player.
3. The number of units lost during an attack/defence.
4. The number of units available for an attack/defence.
5. The number of units moved when fortifying.
(4) and (5) can be generalised further as range proofs.

For (1), we propose the following communication sequence. The player submits pairs
(R, cr) for each region they control, where R is the region and cg is a ciphertext encoding
the number of reinforcements to add to the region (which may be 0). Each player computes
CR, " ---"CR,-
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4.12 Cheating with negative values

By using negative values, a player can cheat their unit count during reinforcements. This
is a severe issue, as potentially the cheat could be completely unnoticed even in the
conclusion of the game. To overcome this, we apply a range proof for each committed
value.

Boudot| (2000) demonstrates a proof that some given ciphertext lies within an interval
[—¢, 2], where ¢ is some public value. This proof can easily be manipulated into a proof
that a value lies within the interval [0, 3¢] from the additive homomorphic property.

The combination of proofs is then to prove that the sum of all ciphertexts is 1, and the
range of each ciphertext is as tight as possible, which is within the range [0, 3] from the
proof above. This is acceptable in the specific application, however we can achieve a
better proof that is similar in operation to Boudot| (2000)).

Instead of proving a value is within a range, the prover will demonstrate that a bijection
exists between the elements in the reinforcement set and a challenge set.

Protocol 4.3. The prover transmits the set

S ={(Ri,E(ni,r1)),...,(Ry, E(ny,ry))}

as their reinforcement step. Verifier wants that the second projection of this set maps to 1
exactly once.

Run ¢ times in parallel:

1. Prover transmits {(¢Y(R;), E(ni,77)) | 0 <i < N} where ¢ is a random bijection on
the regions.

2. Verifier chooses a random ¢ € {0, 1}.

(a) If ¢ = 0, the verifier requests the definition of 1, to indeed see that this is a
valid bijection. They then compute the product of the E(x,r;) - E(z*, r}) and
verify proofs that each of these is zero.

(b) If ¢ = 1, the verifier requests a proof that each E(n;,r}) is as claimed.

This protocol has the following properties, given that the proof of zero from before also
holds the same properties (Damgard, Jurik and Nielsen|, 2003).

e Complete. The verifier will clearly always accept S given that S is valid.

e Sound. A cheating prover will trick a verifier with probability 27¢. So select a
sufficiently high ¢.

e Zero-knowledge. Supposing each v, r;, and r} are generated in a truly random
manner, the verifier gains no additional knowledge of the prover’s private state.

Additionally, we can consider this protocol perfect zero-knowledge.

Proposition 4.4. In the random oracle model, is perfect zero-knowledge.

Proof. To prove perfect zero-knowledge, we require a polynomial-time algorithm 7™ such
that for all verifiers and for all valid sets S, the set of transcripts T'(P,V, S) = T*(S), and
the distributions are identical.
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Such a T™ can be defined for any S.
1. Choose a random v’ from the random oracle.
2. Choose random (r})’ from the random oracle.
3. Encrypt under P’s public-key.

4. Verifier picks c as before.

5

. Perform proofs of zero, which are also perfect zero-knowledge from Damgard, Jurik
and Nielsen| (2003).

This gives T such that T%(S) = T'(P,V,S), and the output distributions are identical.
Hence, this proof is perfect zero-knowledge under random oracle model. O

4.13 Shared random values

A large part of Risk involves random behaviour dictated by rolling some number of dice.
To achieve this, some fair protocol must be used to generate random values consistently
across each peer without any peer being able to manipulate the outcomes.

This is achieved through bit-commitment and properties of Z,,. The protocol for two peers
is as follows, and generalises to n peers trivially.

Generate random Generate random
noise Ny, random key noise Np, random key
k‘A kB
Ek?A (NA)
Ek’B (NB)
kA
kg
Compute N4q + Np Compute Ny + Np

Depending on how N4 + Np is then turned into a random value within a range, this
system may be manipulated by an attacker who has some knowledge of how participants
are generating their noise. As a basic example, suppose a random value within range is
generated by taking N4 + Ng mod 3, and participants are producing 2-bit noises. An
attacker could submit a 3-bit noise with the most-significant bit set, in which case the
probability of the final result being a 1 are significantly higher than the probability of a 0
or a 2. This is a typical example of modular bias. To avoid this problem, peers should
agree beforehand on the number of bits to transmit. Addition of noise will then operate
modulo 2¢, where ¢ is the agreed-upon number of bits.

The encryption function used must also guarantee the integrity of decrypted ciphertexts
to prevent a malicious party creating a ciphertext which decrypts to multiple valid values
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through using different keys.

Proposition 4.5. With the above considerations, the scheme shown is not manipulable
by a single cheater.

Proof. Suppose Py, ..., P, 1 are honest participants, and P, is a cheater with a desired
outcome.

In step 1, each participant P, commits Ej,(V;). The cheater P, commits a constructed
noise Ey, (N,).

The encryption function Ej, holds the confidentiality property: that is, without k, P; cannot
retrieve m given Ex(m). So P,’s choice of N,, cannot be directed by other commitments.

The final value is dictated by the sum of all decrypted values. P, is therefore left in a
position of choosing N,, to control the outcome of a + N,,, where a is selected uniformly
at random from the abelian group Zy for ¢ the agreed upon bit length.

As every element of this group is of order 2¢, the distribution of a + N, is identical no
matter the choice of N,. So P, maintains no control over the outcome of a + NV,,. O

This extends inductively to support n — 1 cheating participants, even if colluding. Finally,
we must consider how to reduce random noise to useful values.

4.14 Avoiding modular bias

The typical way to avoid modular bias is by resampling. To avoid excessive communication,

resampling can be performed within the bit sequence by partitioning into blocks of n bits

and taking blocks until one falls within range. This is appropriate in the presented use

case as random values need only be up to 6, so the probability of consuming over 63 bits
1

of noise when resampling for a value in the range 0 to 5 is (1)21 ~ 2.3 x 1071,

4.15 Application to domain
Random values are used in two places.
e Selecting the first player.
e Rolling dice.

5 Implementation review

5.1 Random oracles

Various parts of the implementation use the random oracle model: in particular, the
zero-knowledge proof sections. The extent to which the random oracle model is used is
in the construction of truly random values that will not reveal information about the
prover’s state. In practice, a cryptographically secure pseudo random number generator
will suffice for this application, as CSPRNGs typically incorporate environmental data
to ensure outputs are unpredictable (random, urandom - kernel random number source
devices, 2017).
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5.2 Efficiency

Storage complexity

Paillier ciphertexts are constant size, each ~1.0kB in size (as they are taken modulo n?,
where n is the product of two 2048 bit primes). This is small enough for the memory and
network limitations of today.

The proof of zero uses two Paillier ciphertexts, a challenge of size 2048 bits, and a proof
statement of size 4096 bits. In total, this is ~2.8kB. These are constant size, and since
they run in a single round, take constant time.

On the other hand, requires multiple rounds. Assume that we use 42
rounds: this provides an acceptable level of soundness, with a cheat probability of
(%)_42 ~ 2.3 x 10713, Additionally, assume that there are 10 regions to verify. Each round
then requires ten Paillier ciphertexts alongside ten proofs of zero. This results in a proof
size of ~1.7MB. Whilst this is still within current memory limitations, the network cost is

extreme.

This could be overcome by reducing the number of rounds, which comes at the cost of
increasing the probability of cheating. In a protocol designed to only facilitate a single
game session, this may be acceptable to the parties involved. For example, reducing the
number of rounds to 19 will increase the chance of cheating to (1)719 ~ 1.9 x107% but

2
the size would reduce considerably to ~770kB.

Another potential solution is to change the second challenge’s structure to only verify a
single random ciphertext each turn. This would approximately half the amount of data
required at the expense of soundness. However, the advantage over lowering the number
of rounds is that the change in soundness is dependent on the number of items in the
set being verified. By a tactful selection, a high probability of soundness can still be
maintained.

5.3 Quantum resistance

Some of the security of Paillier relies upon the difficulty of factoring large numbers.
Therefore, it is vulnerable to the same quantum threat as RSA is, which is described by
Shor| (1997). Alternative homomorphic encryption schemes are available, which are widely
believed to be quantum-resistant, as they are based on lattice methods (e.g, Gentry, Sahai

and Waters| (2013))).

5.4 Side-channels

The specific implementation is likely vulnerable to side-channel attacks. The specification
for Biglnt does not specify that operations should be constant-time, and variation between
browser engines could lead to timing attacks.

6 Wider application

Peer-to-peer software is a slowly growing field.
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