
Cryptographic protocol for playing Risk in an
untrusted setting

Jude Southworth

Bachelor of Science in Computer Science and Mathematics
The University of Bath

2023

1

1 Outline
Risk is a strategy game developed by Albert Lamorisse in 1957. It is a highly competitive
game, in which players battle for control over regions of a world map by stationing units
within their territories in order to launch attacks on neighbouring territories that are not
in their control.

2 Existing solutions
For playing games over an internet connection, multiple solutions already exist. These can
roughly be broken down into those that are centralised and those that are decentralised,
although many decentralised systems rely on federated or centralised communications for
peer discovery.

2.1 Centralised

In highly centralised networks, traffic is routed to a number of servers that are operated by
the same organisation who maintains the game or service. This is the current standard for
the majority of the internet: in fact, this is the methodology used by the official version
of Risk, playable as an app.

Without patching the executables, there is no way for a user to run their own servers, or
to connect to a third party’s server. This has two main advantages:

• Moderation. The developers can enforce their own rules through some form of
EULA, and this would be properly enforceable, as if a user is banned from the
official servers, there is no alternative.

• Security. The server acts as a trusted party, and validates all communications from
players. Hence, players cannot subvert a (properly implemented) service’s protocol.

2.2 Peer-to-peer networks

In peer-to-peer (P2P) networks, traffic may be routed directly to other peers, or servers
may be operated by third parties (sometimes called "federated networks"). This form
of communication is still popular in certain games or services, for example BitTorrent is
primarily a P2P service; and titles from the Counter-Strike series are federated, with a
wide selection of third party hosts.

The main advantage of peer-to-peer networks over centralised networks is longevity. Games
such as Unreal Tournament 99 (which is federated) still have playable servers, as the
servers are community-run, and so as long as people still wish to play the game, they will
remain online (despite the original developers no longer making any profit from the title)
[3].

However, security can often be worse in fully peer-to-peer networks than that of fully
centralised networks. Peers may send malicious communications, or behave in ways that
violate the general rules of the service. As there is no trusted server, there is no easy way
to validate communications to prevent peers from cheating.

2

Some peer-to-peer services try to address issues with security. In file-sharing protocols
such as BitTorrent, a tracker supplies hashes of the file pieces to validate the file being
downloaded [7]. However, the downside of this approach is that a trusted party (in this
case the tracker) is still required. A malicious tracker could supply bad hashes, or an
outdated tracker may expose the peer to security vulnerabilities.

2.3 Untrusted setups

Currently, there exists an online centralised version of the board game Risk.

We aim to apply bit-commitment schemes and zero-knowledge proof protocols to an online
P2P variant of Risk, to allow peers to play the game whilst preventing cheating and needing
no trusted parties. The variant of interest is the "fog of war" variant, where a player
cannot see the unit counts of regions besides those that they own or are neighbouring.

3 Literature review
Centralised systems can securely perform the generation of random values, through using
a cryptographically secure random number generator on the server-side, and distributing
the values to the clients. This is how dice rolls are processed in centralised online games.
However, in a P2P system, something else must be done to simulate the randomness.

For dice rolling, we want that

• No peer can change the probable outcome of the dice (random),

• No peer can deny having rolled the dice (non-repudiation).

We apply the concept of bit commitment schemes to form these guarantees.

3.1 Bit commitment schemes

Bit commitment schemes provide a mechanism for one party to commit to some hid-
den value and reveal it later. This can be achieved through the use of commutative
cryptographic algorithms and with one-way functions.

Commutative cryptography

[18] provides a protocol using bit commitment to play poker. They offer a bit commitment
scheme using commutative encryption algorithms based on modular arithmetic. This
scheme works by each player encrypting cards, and decrypting in a different order as to
obscure the value of the actual cards until all players have decrypted.

Many encryption schemes are not commutative however. One alternative is to use some
well-known one-way function, such as SHA, with randomly generated salts.

Bit commitment with one-way functions

Bit commitment schemes can also be implemented using one-way functions:

1. The first party decides on the value m to be committed to.

3

2. The first party generates some random value r.

3. The first party generates and publishes some value c = H(m, r), where H is an
agreed-upon public one-way function.

4. The first party publishes m and r to the second party some time later.

5. The second party computes c′ = H(m, r) and validates that c = c′.

[5] provides a protocol for flipping fair coins across a telephone, which is isomorphic to
selecting a random value from a set of two values. This cannot be simply repeated though
to generate numbers in the range of 1-6, as 6 is not a power of 2.

However, a similar protocol can be used where each player commits to a single value
x ∈ Z6. As the distribution of outcomes of addition in the group Zn is fair, we can then
sum the values of x committed to by both players to deduce a final value for the roll. To
decrease the amount of communications required for rolling a number of dice, a vector of
values can be used.

This protocol relies only on the ability for one party to produce random numbers. We can
consider the Z6-set on Z6: upon one party selecting x ∈ Z6, the other party’s selection is
from the group x · Z6 = {x+ 0, . . . , x+ 5} ∼= Z6. So, the potential outcomes only require
one party to select randomly.

If both parties were to collude and generate non-randomly, this protocol falls through.
A potential way around this is to involve other players in the protocol: the same rule
applies of only a single player needs to be selecting randomly to produce random outputs.
Therefore, so long as there are non-colluding players, this would protect against basic
collusion.

3.2 Zero-knowledge proofs

Zero-knowledge proofs form a subset of minimum disclosure proofs, and beyond that,
a subset of interactive proofs. Zero-knowledge proofs are typically defined by three
properties:

• Completeness. If the conjecture is true, an honest verifier will be convinced of its
truth by a prover.

• Soundness. If the conjecture is false, a cheating prover cannot convince an honest
verifier (except with some small probability).

• Zero-knowledge. This is the condition for a minimum disclosure proof to be
considered zero-knowledge. If the conjecture is true, the verifier cannot learn any
other information besides the truthfulness.

Zero-knowledge proofs are particularly applicable to the presented problem. They primarily
solve two problems:

• The disclosure of some information without leaking other information,

• The proof presented can only be trusted by the verifier, and not by other parties.

We can further formalise the general description of a zero-knowledge proof. [13] provides
a common formalisation of the concept of a zero-knowledge proof system for a language L

4

by stating that

• For every x ∈ L, the verifier will accept x following interaction with a prover.

• For some polynomial p and any x /∈ S, the verifier will reject x with probability at
least 1

p(|x|) .

• A verifier can produce a simulator S such that for all x ∈ L, the outputs of S(x) are
indistinguishable from a transcript of the proving steps taken with the prover on x.

The final point describes a proof as being computationally zero-knowledge. Some stronger
conditions exist, which describe the distributions of the outputs of the simulator versus
the distributions of the outputs of interaction with the prover.

• Perfect. A simulator produced by a verifier produces outputs that are distributed
identically to real transcripts.

• Statistical. A simulator produced by a verifier gives transcripts distributed identi-
cally, except for some constant number of exceptions.

Some proofs described are honest-verifier zero-knowledge proofs. In these circumstances,
the verifier is required to act in accordance with the protocol for the simulator distribution
to behave as expected. We consider verifiers as honest, as it appears they may only impede
themselves by acting dishonestly.

Games as graphs

The board used to play Risk can be viewed as an undirected graph. Each region is a node,
with edges connecting it to the adjacent regions. For convenience, we also consider the
player’s hand to be a node, which has all units not in play placed upon it.

Furthermore, the actions taken when playing the game can be seen as constructing new
edges on a directed weighted graph. This makes us interested in the ability to prove that
the new edges conform to certain rules.

The main game protocol can be considered as the following graph mutations for a player
P :

• Reinforcement. A player updates the weight on some edges of the graph that lead
from the hand node HP to region nodes R1, . . . , Rn in their control.

– Any adjacent players will then need to undergo proving the number of units on
neighbouring regions.

• Attack. Player P attacks RB from RA. In the event of losing units, the player
updates the edge on the graph from RA to the hand node HP .

In the event of winning the attack, the player updates the edge from RA to RB to
ensure some non-zero amount of units is located in the region.

• Unit movement. The player updates an edge from one region R1 to another
neighbouring region R2.

The goal is then to identify ways to secure this protocol by obscuring the edges and
weights, whilst preventing the ability for the player to cheat.

5

Graphs & ZKPs

[11] identifies methods to construct zero-knowledge proofs for two graphs being isomorphic
or non-isomorphic.

Identifying Risk as a graph therefore enables us to construct isomorphisms as part of
the proof protocol. For example, when a player wishes to commit to a movement, it is
important to prove that the initial node and the new node are adjacent. This can be
proven by communicating isomorphic graphs, and constructing challenges based on the
edges of the original graph.

Adjacency proofs

Proving adjacency of two nodes is akin to proving isomorphism of two graphs. A protocol
using challenges could be constructed as follows:

1. The prover commits a new edge between two nodes.

2. The prover constructs an isomorphic graph to the game, and encrypts the edges.

3. The verified challenges either:

• That the graphs are isomorphic.

• That the new edge is valid.

4. The prover sends a total decryption key for the graph’s nodes, to prove isomorphism
to the game board; or a decryption key for the new edge to the isomorphism, to
prove adjacency.

These challenges restrict the ability for the prover to cheat: if the two nodes they
are committing to are not adjacent, either the prover will need to commit an invalid
isomorphism (detected by challenge 1), or lie about the edge they have committed (detected
by challenge 2).

Selection between two challenges is the ideal number of challenges to use, as the probability
of cheating being detected is 1

2
. Using more challenge options (e.g, n) means the likelihood

of the prover cheating a single challenge reduces to 1
n
. This would require much larger

numbers of communications to then convince the verifier to the same level of certainty.

Adjacency proofs are necessary to ensure that players move units fairly.

Cheating with negative values

Zerocash is a ledger system that uses zero-knowledge proofs to ensure consistency and
prevent cheating. Ledgers are the main existing use case of zero-knowledge proofs, and
there are some limited similarities between ledgers and Risk in how they wish to obscure
values of tokens within the system.

Publicly-verifiable preprocessing zero-knowledge succinct non-interactive arguments of
knowledge (zk-SNARKs) are the building blocks of Zerocash [4], and its successor Zcash.
A zk-SNARK consists of three algorithms: KeyGen, Prove, Verify.

These are utilised to construct and verify transactions called POURs. A POUR takes, as input,
a certain "coin", and splits this coin into multiple outputs whose values are non-negative

6

and sum to the same value as the input. The output coins may also be associated with
different wallet addresses.

Zerocash then uses zk-SNARKs as a means to prove that the value of the inputs into a
POUR is the same as the value of the outputs. This prevents users from generating "debt",
or from generating value without going through a minting process (also defined in the
Zerocash spec).

Ensuring consistency of weights

A similar issue appears in the proposed system: a cheating player could update the weights
on their graph to cause a region to be "in debt". Therefore, we need the protocol to
ensure players prove that the sum of all edges is equal to how many units the player has
in play (a well-known value).

Additive homomorphic cryptosystems

Some cryptosystems admit an additive homomorphic property: that is, given the public
key and two encrypted values σ1 = E(m1), σ2 = E(m2), the value σ1 + σ2 = E(m1 +m2)
is the ciphertext of the underlying operation.

[15] defined a cryptosystem based on residuosity classes, which expresses this property.
[8] demonstrates an honest-verifier zero-knowledge proof for proving a given value is 0.
Hence, clearly, proving a summation a+ b = v can be performed by proving v − a− b = 0
in an additive homomorphic cryptosystem.

So, using some such scheme to obscure edge weights should enable verification of the edge
values without revealing their actual values.

Reducing communication

In the presented algorithms, interaction is performed fairly constantly, leading to a large
number of communications. This will slow the system considerably, and make proofs
longer to perform due to network latency.

An alternative general protocol is the Σ-protocol [12]. In the Σ-protocol, three communi-
cations occur:

• The prover sends the conjecture.

• The verifier sends a random string.

• The prover sends some proofs generated using the random string.

This reduces the number of communications to a constant, even for varying numbers of
challenges.

The Fiat-Shamir heuristic [9] provides another method to reduce communication by
constructing non-interactive zero-knowledge proofs using a random oracle. For ledgers,
non-interactive zero-knowledge proofs are necessary, as the ledger must be resilient to a
user going offline. However, in our case, users should be expected to stay online for an
entire session of Risk, and each session is self-contained. So this full transformation is not
necessary.

7

Set membership proofs

Another approach to the problem is to use set membership, which is a widely considered
problem in zero-proof literature. In this case, each region would be associated with a set
of units from a public "pool" of units. Then, a player needs to prove the cardinality of
a set, and the uniqueness/distinctness of its members. A number of constructs exist for
analysing and proving in obscured sets.

4 Implementation
The implementation provided uses WebSockets as the communication primitive. This is
therefore a centralised implementation. However, no verification occurs in the server code,
which instead simply "echoes" messages received to all connected clients.

Despite this approach being centralised, it does emulate a fully peer-to-peer environment,
and has notable benefits:

• It is faster to develop, use, and test than using a physical system such as mail;

• There is no need for hole-punching or port-forwarding;

• WebSockets are highly flexible in how data is structured and interpreted.

In particular, the final point allows for the use of purely JSON messages, which are readily
parsed and processed by the client-side JavaScript.

4.1 Message structure

Messages are given a fixed structure to make processing simpler. Each JSON message
holds an author field, being the sender’s ID; a message ID to prevent replay attacks and
associate related messages; and an action, which at a high level dictates how each client
should process the message.

The action more specifically is one of ANNOUNCE, DISCONNECT, KEEPALIVE, RANDOM, PROOF,
and ACT. The first three of these are used for managing the network by ensuring peers are
aware of each other and know the state of the network. RANDOM and PROOF are designated
to be used by sub-protocols defined later on. ACT is used by players to submit actions for
their turn during gameplay.

Each message is also signed to verify the author. This is a standard application of RSA.
A hash of the message is taken, then encrypted with the private key. This can be verified
with the public key.

Players trust RSA keys on a trust-on-first-use (TOFU) basis. TOFU is the same protocol
as used by Gemini [1]. The main issue with TOFU is that if a malicious party intercepts
the first communication, they may substitute the RSA credentials transmitted by the
intended party, resulting in a man-in-the-middle attack.

4.2 Paillier cryptosystem

Paillier requires the calculation of two large primes for the generation of public and private
key pairs. ECMAScript typically stores integers as floating point numbers, giving precision

8

up to 253. This is clearly inappropriate for the generation of sufficiently large primes.

In 2020, ECMAScript introduced BigInt [20], which are, as described in the spec,
"arbitrary precision integers". Whilst this does not hold true in common ECMAScript
implementations (such as Chrome’s V8), these "big integers" still provide sufficient
precision for the Paillier cryptosystem, given some optimisations and specialisations are
made with regards to the Paillier algorithm and in particular the modular exponentiation
operation.

It must be noted that BigInt is inappropriate for cryptography in practice, due to the
possibility of timing attacks as operations are not necessarily constant time [20]. In
particular, modular exponentiation is non-constant time, and operates frequently on secret
data. A savvy attacker may be able to use this to leak information about an adversary’s
private key; however, as decryption is not performed, this risk is considerably reduced as
there is less need to perform optimisations based on Chinese remainder theorem which
would require treating the modulus n as its two components p and q.

4.3 Modular exponentiation

As BigInt’s V8 implementation does not optimise modular exponentiation, we employ
the use of addition chaining, as described in [17]. Addition chaining breaks a modular
exponentiation into repeated square-and-modulo operations, which are computationally
inexpensive to perform.

The number of operations is dependent primarily on the size of the exponent. For an
exponent of bit length L, somewhere between L and 2L multiply-and-modulo operations
are performed, which gives overall a logarithmic time complexity supposing bit-shifts and
multiply-and-modulo are constant time operations.

4.4 Generating large primes

I chose to use primes of length 2048 bits. This is a typical prime size for public-key
cryptography, as this generates a modulus n = pq of length 4096 bits.

Generating these primes is a basic application of the Rabin-Miller primality test [16].
This produces probabilistic primes, however upon completing sufficiently many rounds of
verification, the likelihood of these numbers actually not being prime is dwarfed by the
likelihood of hardware failure.

4.5 Public key

In the Paillier cryptosystem, the public key is a pair (n, g) where n = pq for primes p, q
satisfying gcd(pq, (p− 1)(q − 1)) = 1 and g ∈ Z∗

n2 . We restrict the range of plaintexts m
to m < n.

The Paillier cryptosystem is otherwise generic over the choice of primes p, q. However,
by choosing p, q of equal length, the required property on pq, (p − 1)(q − 1) coprime is
guaranteed.

Proposition 4.1. For p, q prime of equal length, gcd(pq, (p− 1)(q − 1)) = 1.

9

Proof. Without loss of generality, assume p > q. Suppose gcd(pq, (p − 1)(q − 1)) ̸= 1.
Then, q | p− 1. However, the bit-lengths of p, q are identical. So 1

2
(p− 1) < q. This is

a contradiction to q | p− 1 (as 2 is the smallest possible divisor), and so we must have
gcd(pq, (p− 1)(q − 1)) = 1 as required.

As the prime generation routine generates primes of equal length, this property is therefore
guaranteed. The next optimisation is to select g = 1 + n.

Proposition 4.2. 1 + n ∈ Z∗
n2.

Proof. We see that (1 + n)n ≡ 1 mod n2 from binomial expansion. So 1 + n is invertible
as required.

The selection of such g is ideal, as the binomial expansion property helps to optimise
exponentiation. Clearly, from the same result, gm = 1+mn. This operation is far easier to
perform, as it can be performed without having to take the modulus to keep the computed
value within range.

4.6 Encryption

The ciphertext is, in general, computed as c = gmrn mod n2 for r < n some random
secret value. To make this easier to compute, we compute the equivalent value c = (rn

mod n2) · (gm mod n2) mod n2.

4.7 Private key

The private key is the value of the Carmichael function λ = λ(n), defined as the exponent
of the group Z∗

n. From the Chinese remainder theorem, λ(n) = λ(pq) can be computed as
lcm(λ(p), λ(q)). From Carmichael’s theorem, this is equivalent to lcm(ϕ(p), ϕ(q)), where
ϕ is Euler’s totient function. Hence, from the definition of Euler’s totient function, and as
p, q are equal length, λ = (p− 1)(q − 1) = ϕ(n).

We are also interested in the ability to compute µ = λ−1 mod n as part of decryption.
Fortunately, this is easy, as from Euler’s theorem, λϕ(n) ≡ 1 mod n, and so we propose
µ = λϕ(n)−1 mod n. As ϕ(n) is well-known to us, we get µ = λ(p−1)(q−1) mod n, a
relatively straight-forward computation.

4.8 Decryption

Let c be the ciphertext. The corresponding plaintext is computed as m = L(cλ mod n2)·µ
mod n, where L(x) = x−1

n
. This is relatively simple to compute in JavaScript.

4.9 Implementation details

Paillier is implemented by four classes: PubKey, PrivKey, Ciphertext, and ReadOnlyCiphertext.
PubKey.encrypt converts a BigInt into either a Ciphertext or a ReadOnlyCiphertext
by the encryption function above. The distinction between these is that a ReadOnlyCiphertext
does not know the random r that was used to form it, and so is created by decrypting a
ciphertext that originated with another peer. A regular Ciphertext maintains knowledge

10

of r and the plaintext it enciphers. This makes it capable of proving by the scheme
presented below.

4.10 Shared random values

A large part of Risk involves random behaviour dictated by rolling some number of dice.
To achieve this, some fair protocol must be used to generate random values consistently
across each peer without any peer being able to manipulate the outcomes.

This is achieved through bit-commitment and properties of Zn. The protocol for two peers
is as follows, and generalises to n peers trivially.

Peer A Peer B

Generate random
noise NA, random key
kA

Generate random
noise NB, random key
kB

EkA(NA)

EkB(NB)

kA

kB

Compute NA +NB Compute NA +NB

Depending on how NA + NB is then turned into a random value within a range, this
system may be manipulated by an attacker who has some knowledge of how participants
are generating their noise. As a basic example, suppose a random value within range is
generated by taking NA +NB mod 3, and participants are producing 2-bit noises. An
attacker could submit a 3-bit noise with the most-significant bit set, in which case the
probability of the final result being a 1 are significantly higher than the probability of a 0
or a 2. This is a typical example of modular bias. To avoid this problem, peers should
agree beforehand on the number of bits to transmit. Addition of noise will then operate
modulo 2ℓ, where ℓ is the agreed-upon number of bits.

The encryption function used must also guarantee the integrity of decrypted ciphertexts
to prevent a malicious party creating a ciphertext which decrypts to multiple valid values
through using different keys.

Proposition 4.3. With the above considerations, the scheme shown is not manipulable
by a single cheater.

Proof. Suppose P1, . . . , Pn−1 are honest participants, and Pn is a cheater with a desired
outcome.

In step 1, each participant Pi commits Eki(Ni). The cheater Pn commits a constructed
noise Ekn(Nn).

11

The encryption function Ek holds the confidentiality property: that is, without k, Pi cannot
retrieve m given Ek(m). So Pn’s choice of Nn cannot be directed by other commitments.

The final value is dictated by the sum of all decrypted values. Pn is therefore left in a
position of choosing Nn to control the outcome of a+Nn, where a is selected uniformly
at random from the abelian group Z2ℓ for ℓ the agreed upon bit length.

As every element of this group is of order 2ℓ, the distribution of a +Nn is identical no
matter the choice of Nn. So Pn maintains no control over the outcome of a+Nn.

This extends inductively to support n− 1 cheating participants, even if colluding. Finally,
we must consider how to reduce random noise to useful values.

4.11 Avoiding modular bias

The typical way to avoid modular bias is by resampling. To avoid excessive communication,
resampling can be performed within the bit sequence by partitioning into blocks of n bits
and taking blocks until one falls within range. This is appropriate in the presented use
case as random values need only be up to 6, so the probability of consuming over 63 bits
of noise when resampling for a value in the range 0 to 5 is

(
1
4

)21 ≈ 2.3× 10−13.

4.12 Application to domain

Random values are used in two places.

• Selecting the first player.

• Rolling dice.

4.13 Proof system

The first proof to discuss is that of [8]. The authors give a method to prove knowledge of
an encrypted value. The importance of using a zero-knowledge method for this is that
it verifies knowledge to a single party. This party should be an honest verifier: this is
an assumption we have made of the context, but in general this is not true, and so this
provides an attack surface for colluding parties.

The proof system presented is an interactive proof for a given ciphertext c being an
encryption of zero.

12

Prover Verifier

r ∈ Z∗
n with c = rn

mod n2

c

Choose random r∗ ∈ Z∗
n

a = (r∗)n mod n2

Choose random e

e

z = r∗re mod n

Verify z, c, a coprime to n
Verify zn ≡ ace mod n2

A proof for the following homologous problem can be trivially constructed: given some
ciphertext c = gmrn mod n2, prove that the text cg−m mod n2 is an encryption of 0.
The text cg−m is constructed by the verifier. The prover then proceeds with the proof
as normal, since cg−m is an encryption of 0 under the same noise as the encryption of m
given.

4.14 Implementation details

Proofs of zero use messages labelled as "PROOF" to resolve, and resolve between two
parties. The proof is initialised by the prover as part of the game protocol, who sends
an initial message containing the fields conjecture: int and a: str (where a is the
serialisation of a BigInt representing a and conjecture is the proposed plaintext).

The prover then registers a new event listener to respond to the verifier’s challenge in a
non-blocking way when received.

The verifier receives the message above, and responds with a random challenge selected
by generating a cryptographically secure pseudorandom number of 2048 bits, and then
dropping the LSB. Using 2047 bits guarantees that the challenge is smaller than p or q,
as is suggested in the original paper. The verifier then registers a new event listener to
receive the prover’s proof.

Verifying the proof is a simple application of extended Euclidean algorithm to check
coprimality, and a modular exponentiation and reduction to check the final equivalence.
The ciphertext on the verifier’s instance is then tagged with the proven plaintext (should
the proof succeed). This tag is removed in the case that the ciphertext is updated.

13

4.15 Application to domain

Players should prove a number of properties of their game state to each other to ensure
fair play. These are as follows.

1. The number of reinforcements placed during the first stage of a turn.

2. The number of units on a region neighbouring another player.

3. The number of units available for an attack/defence.

4. The number of units lost during an attack/defence (including total depletion of
units and loss of the region).

5. The number of units moved when fortifying.

(2) and (4) are both covered by the proof above. (3) is okay between two players, as it
is a subcase of (2). But in the case of more players, the availability of units should be
proven. One way to achieve this is with a range proof.

[6] demonstrates a proof that some given ciphertext lies within an interval [−ℓ, 2ℓ], where
ℓ is some public value. This proof can easily be manipulated into a proof that a value lies
within the interval [n, 3ℓ+ n] from the additive homomorphic property. By selecting a
sufficiently high ℓ and appropriate n, this proof is appropriate for proving to other players
that the number of units being used in an attack is valid.

4.16 Range proof

[6]’s proof is a multi-round proof more similar in structure to the graph isomorphism
proof presented in [11]. We select public parameter ℓ to be some sufficiently high value
that a player’s unit count should not exceed during play: an appropriate choice may be
1000. Select n as the number of units that the player is defending with, or in the case
of attacking, let n be the number of units that the player is attacking with plus 1 (as is
required by the rules of Risk).

To reduce the number of times the proof must be conducted, we use the Fiat-Shamir
heuristic, with the shared random values scheme acting as the random oracle.

4.17 Cheating with negative values

By using negative values, a player can cheat stage (1) of the above. This is a severe issue,
as potentially the cheat could be completely unnoticed even in the conclusion of the game.
To overcome this, we apply proofs on each committed value that are verified by all players.

One consideration is to use a range proof as above. The full proof would then be the
combination of a proof that the sum of all ciphertexts is 1, and the range of each ciphertext
is as tight as possible, which is within the range [0, 3]. This is acceptable in the specific
application, however we can achieve a better proof that is similar in operation to [6].

Instead of proving a value is within a range, the prover will demonstrate that a bijection
exists between the elements in the reinforcement set and a challenge set.

Protocol 4.4. The prover transmits the set

S = {(R1, E(n1, r1)), . . . , (RN , E(nN , rN))}

14

as their reinforcement step. Verifier wants that the second projection of this set maps to 1
exactly once.

Run t times in parallel:

1. Prover transmits {(ψ(Ri), E(ni, r
∗
i)) | 0 < i ≤ N} where ψ is a random bijection on

the regions.

2. Verifier chooses a random c ∈ {0, 1}.

(a) If c = 0, the verifier requests the definition of ψ, to indeed see that this is a
valid bijection. They then compute the product of the E(x, r1) · E(x∗, r∗1) and
verify proofs that each of these is zero.

(b) If c = 1, the verifier requests a proof that each E(ni, r
∗
i) is as claimed.

This protocol has the following properties, given that the proof of zero from before also
holds the same properties [8].

• Complete. The verifier will clearly always accept S given that S is valid.

• Sound. A cheating prover will trick a verifier with probability 2−t. So select a
sufficiently high t.

• Zero-knowledge. Supposing each ψ, ri, and r∗i are generated in a truly random
manner, the verifier gains no additional knowledge of the prover’s private state.

Additionally, we can consider this protocol perfect zero-knowledge.

Proposition 4.5. In the random oracle model, Protocol 4.4 is perfect zero-knowledge.

Proof. To prove perfect zero-knowledge, we require a polynomial-time algorithm T ∗ such
that for all verifiers and for all valid sets S, the set of transcripts T (P, V, S) = T ∗(S), and
the distributions are identical.

Such a T ∗ can be defined for any S.

1. Choose a random ψ′ from the random oracle.

2. Choose random (r∗i)
′ from the random oracle.

3. Encrypt under P ’s public-key.

4. Verifier picks c as before.

5. Perform proofs of zero, which are also perfect zero-knowledge from [8].

This gives T ∗ such that T ∗(S) = T (P, V, S), and the output distributions are identical.
Hence, this proof is perfect zero-knowledge under random oracle model.

5 Review

5.1 Random oracles

Various parts of the implementation use the random oracle model: in particular, the
zero-knowledge proof sections. The extent to which the random oracle model is used is
in the construction of truly random values that will not reveal information about the

15

prover’s state. In practice, a cryptographically secure pseudo random number generator
will suffice for this application, as CSPRNGs typically incorporate environmental data to
ensure outputs are unpredictable [2].

5.2 Efficiency

Storage complexity

Paillier ciphertexts are constant size, each ∼1.0kB in size (as they are taken modulo n2,
where n is the product of two 2048 bit primes). This is small enough for the memory and
network limitations of today.

The proof of zero uses two Paillier ciphertexts, a challenge of size 2048 bits, and a proof
statement of size 4096 bits. In total, this is ∼2.8kB. These are constant size, and since
they run in a single round, take constant time.

On the other hand, Protocol 4.4 requires multiple rounds. Assume that we use 42
rounds: this provides an acceptable level of soundness, with a cheat probability of(
1
2

)−42 ≈ 2.3 × 10−13. Additionally, assume that there are 10 regions to verify. Each
round then requires ten Paillier ciphertexts alongside ten proofs of zero. This results in a
proof size of ∼1.7MB. Whilst this is still within current memory limitations, the network
cost is extreme; and this value may exceed what can be reasonably operated on within a
processor’s cache.

This could be overcome by reducing the number of rounds, which comes at the cost of
increasing the probability of cheating. In a protocol designed to only facilitate a single
game session, this may be acceptable to the parties involved. For example, reducing the
number of rounds to 19 will increase the chance of cheating to

(
1
2

)−19 ≈ 1.9× 10−6, but
the size would reduce considerably to ∼770kB.

This is all in an ideal situation without compression or signatures: in the implementation
presented, the serialisation of a ciphertext is larger than this, since it serialises to a
string of the hexadecimal representation and includes a digital signature for authenticity.
Compression shouldn’t be expected to make a considerable difference, as the ciphertexts
should appear approximately random.

The size of the proof of zero communication is, in total, 3290 + 1744 + 2243 characters, i.e
∼7.3kB. This is about 2-3 times larger than the ideal size. A solution to this is to use a
more compact format, for example msgpack [14] (which also has native support for binary
literals).

Time complexity

It is remarked that Paillier encryption performs considerably slower than RSA on all key
sizes. [15] provides a table of theoretic results, suggesting that Paillier encryption can be
over 1,000 times slower than RSA for the same key size.

Timing results versus RSA are backed experimentally by my implementation. The following
benchmarking code was executed.

console.log("Warming up")

16

for (let i = 0n; i < 100n; i++) {
keyPair.pubKey.encrypt(i);

}

console.log("Benching")

performance.mark("start")
for (let i = 0n; i < 250n; i++) {

keyPair.pubKey.encrypt(i);
}
performance.mark("end")

console.log(performance.measure("duration", "start", "end").duration)

Performing 250 Paillier encrypts required 48,800ms. On the other hand, performing 250
RSA encrypts required just 60ms.

The speed of decryption is considerably less important in this circumstance, as Paillier
ciphertexts are not decrypted during the execution of the program.

There is little room for optimisation of the mathematics in Paillier encryption. Some
possibilities are discussed below.

Public parameter. The choice of the public parameter g can improve the time complexity
by removing the need for some large modular exponentiation. Selection of g = n+ 1 is
good in this regard, as binomial theorem allows the modular exponentiation gm mod n2

to be reduced to the computation 1 + nm mod n2.

Smaller key size. The complexity of Paillier encryption increases with key size. Using a
smaller key could considerably reduce the time taken [15].

Pre-computation. As the main values being encrypted are 0 or 1, a peer could pre-
compute the encryptions of these values and transmit these instantly. Pre-computation
may be executed in a background "web worker". A consideration is whether a peer may
be able to execute a timing-related attack by first exhausting a peer’s pre-computed cache
of a known value, and then requesting an unknown value and using the time taken to
determine if the value was sent from the exhausted cache or not.

Taking this idea further, one may simply pre-compute rn for a number of randomly
generated r (as this is the slowest part of encryption). This eliminates the timing attack
concern, and grants full flexibility with the values being encrypted.

Restructuring plaintexts. The maximum size of a plaintext is |n|: in our case, this is
4096 bits. By considering this as a vector of 128 32-bit values, peers could use a single
ciphertext to represent their entire state. Protocol 4.4 can be modified by instead testing
that the given ciphertext is contained in a set of valid ciphertexts. There would still be a
large number of Paillier encryptions required during this proof.

The other proofs do not translate so trivially to this structure however. In fact, in some
contexts the proofs required may be considerably more complicated, becoming round-based
proofs which may be slower and use more Paillier encryptions to achieve the same effect.

Optimising language. An optimising language may be able to reduce the time taken to

17

encrypt. On the browser, this could involve using WASM as a way to execute compiled
code within the browser, although WASM does not always outperform JavaScript.

5.3 Quantum resistance

The security of Paillier relies upon the difficulty of factoring large numbers [15]. Therefore,
it is vulnerable to the same quantum threat as RSA is, which is described by [19].
Alternative homomorphic encryption schemes are available, which are widely believed to
be quantum-resistant, as they are based on lattice methods (e.g, [10]).

5.4 Side-channels

The specific implementation is likely vulnerable to side-channel attacks. The specification
for BigInt does not specify that operations should be constant-time, and variation between
browser engines could lead to timing attacks.

6 Wider application
Peer-to-peer software is an area of software that has fallen somewhat out of interest in
more recent years, as companies can afford to run their own centralised servers (although
no doubt interest still exists: many users are preferring federated services over centralised
services, such as Mastodon, Matrix, XMPP). However, peer-to-peer solutions still have
many benefits to end users: mainly being greater user freedom. I believe that the content
presented here shows clear ways to expand peer-to-peer systems, and reduce dependence
on centralised services.

I propose some ideas which could build off the content here.

6.1 Larger scale P2P games

Presented here was a basic implementation of a reduced rule-set version of the board
game Risk. However, many other games exist that the same transformation could be
applied to. Games of larger scale with a similar structure, such as Unciv, could benefit
from peer-to-peer networking implemented in a similar manner.

This is not without its downsides: I found that the complexity of P2P networking is far
greater than a standard centralised model. This would be a considerable burden on the
developers, and could hurt the performance of such a game. The time taken to process
and verify proofs also makes this inapplicable to games that are real-time.

6.2 Decentralised social media

The schemes presented here and in [8] could be applies to the concept of a decentralised
social media platform. Such a platform may use ZKPs as a way to allow for "private"
profiles: the content of a profile may stay encrypted, but ZKPs could be used as a way to
allow certain users to view private content in a manner that allows for repudiation, and
disallows one user from sharing private content to unauthorised users.

18

The obvious issue is P2P data storage. Users could host their own platforms, but this
tends to lead to low adoption due to complexity for normal people. IPFS is a P2P data
storage protocol that could be considered. This poses an advantage that users can store
their own data, if they have a large amount, but other users can mirror data effectively to
protect against outages. The amount of storage can grow effectively as more users join
the network.

6.3 Handling of confidential data

The ability to prove the contents of a dataset to a second party without guaranteeing
authenticity to a third party is another potential application of the protocol presented.
Handling of confidential data is a critical concern for pharmaceutical companies, where a
data leak imposes serious legal and competitive consequences for the company. A second
party does however need some guarantee that the data received is correct. Proofs are
one way of achieving this, although other techniques such as keyed hashing may be more
effective.

Another consideration in this domain is the use of fully-homomorphic encryption schemes
to allow a third party to process data without actually viewing the data.

7 Limitations
Finally, I present a summary of other limitations that I encountered.

7.1 JavaScript

To summarise, JavaScript was the incorrect choice of language for this project. Whilst
the event-based methodology was useful, I believe overall that JavaScript hampered
development.

JavaScript is a slow language. Prime generation takes a considerable amount of time, and
this extends to encryption and decryption being slower than in an implementation in an
optimising compiled language.

JavaScript’s type system makes debugging difficult. It is somewhat obvious that this
problem is far worse in systems with more interacting parts, which this project certainly
was. TypeScript may have been a suitable alternative, but most likely the easiest solution
was to avoid both and go with a language that was designed with stronger typing in mind
from the outset (even Python would likely have been easier, as there is at least no issue of
undefinedness, and the language was designed with objects in mind from the start).

7.2 General programming

Peer-to-peer programming requires a lot more care than client-server programming. This
makes development far slower and far more bug-prone. As a simple example, consider
the action of taking a turn in Risk. In the peer-to-peer implementation presented, each
separate peer must keep track of how far into a turn a player is, check if a certain action
would end their turn (or if its invalid), contribute in verifying proofs, and contribute in
generating randomness for dice rolls. In a client-server implementation, the server would

19

be able to handle a turn by itself, and could then propagate the results to the other clients
in a single predictable request.

The use of big integers leads to peculiar issues relating to signedness. This is in some
ways a JavaScript issue, but would also be true in other languages. Taking modulo n of
a negative number tends to return a negative number, rather than a number squashed
into the range [0, n]. This leads to inconsistencies when calculating the GCD or finding
Bezout coefficients. In particular, this became an issue when trying to validate proofs of
zero, as the GCD returned −1 rather than 1 in some cases. Resolving this simply required
changing the update and encrypt functions to add the modulus until the representation
of the ciphertext was signed correctly. Whilst the fix for this was simple, having to fix
this in the first place is annoying, and using a non-numerical type (such as a byte stream)
may resolve this in general.

7.3 Resources

The peer-to-peer implementation requires more processing power and more bandwidth on
each peer than a client-server implementation would. This is the main limitation of the
peer-to-peer implementation. The program ran in a reasonable time, using a reasonable
amount of resources on the computers I had access to, but these are not representative
of the majority of people. Using greater processing power increases power consumption,
which is definitely undesirable. In a client-server implementation, even with an extra
computer, I predict that the power consumption should be lower than the peer-to-peer
implementation presented.

Bibliography

[1]

[2] random, urandom - kernel random number source devices, September 2017.

[3] Eatsleeput.com, Feb 2022. Archive: https://archive.ph/Gp0Ou.

[4] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium
on Security and Privacy, pages 459–474, 2014.

[5] M. Blum. Coin flipping by telephone a protocol for solving impossible problems.
ACM SIGACT News, 15(1):23–27, 1983.

[6] F. Boudot. Efficient proofs that a committed number lies in an interval. In Inter-
national Conference on the Theory and Application of Cryptographic Techniques,
2000.

[7] B. Cohen. Bittorrent.org, Feb 2017.

[8] I. Damgård, M. Jurik, and J. Nielsen. A generalization of paillier’s public-key system
with applications to electronic voting. International Journal of Information Security,
9:371–385, 04 2003.

[9] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In A. M. Odlyzko, editor, Advances in Cryptology — CRYPTO’
86, pages 186–194, Berlin, Heidelberg, 1987. Springer Berlin Heidelberg.

[10] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In R. Canetti
and J. A. Garay, editors, Advances in Cryptology – CRYPTO 2013, pages 75–92,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[11] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity
or all languages in np have zero-knowledge proof systems. J. ACM, 38(3):690–728,
jul 1991.

[12] J. Groth. Honest verifier zero-knowledge arguments applied. PhD thesis, BRICS,
2004.

[13] A. Mohr. A survey of zero-knowledge proofs with applications to cryptography.
Southern Illinois University, Carbondale, pages 1–12, 2007.

[14] msgpack. Messagepack: Spec. https://github.com/msgpack/msgpack, 2021.

20

https://github.com/msgpack/msgpack

BIBLIOGRAPHY 21

[15] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In International conference on the theory and applications of cryptographic techniques,
pages 223–238. Springer, 1999.

[16] M. O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory,
12(1):128–138, 1980.

[17] B. Schneier. Applied cryptography. John Wiley, 1996.

[18] A. Shamir, R. L. Rivest, and L. M. Adleman. Mental Poker, pages 37–43. Springer
US, Boston, MA, 1981.

[19] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, oct
1997.

[20] TC39. Bigint: Arbitrary precision integers in javascript. https://github.com/
tc39/proposal-bigint, 2020.

https://github.com/tc39/proposal-bigint
https://github.com/tc39/proposal-bigint

	Outline
	Existing solutions
	Centralised
	Peer-to-peer networks
	Untrusted setups

	Literature review
	Bit commitment schemes
	Zero-knowledge proofs

	Implementation
	Message structure
	Paillier cryptosystem
	Modular exponentiation
	Generating large primes
	Public key
	Encryption
	Private key
	Decryption
	Implementation details
	Shared random values
	Avoiding modular bias
	Application to domain
	Proof system
	Implementation details
	Application to domain
	Range proof
	Cheating with negative values

	Review
	Random oracles
	Efficiency
	Quantum resistance
	Side-channels

	Wider application
	Larger scale P2P games
	Decentralised social media
	Handling of confidential data

	Limitations
	JavaScript
	General programming
	Resources

	Bibliography

