
1

0.0.1 slide1
Risk is a popular strategy game in which competing players aim to control all regions on a board by
moving pieces and attempting to overthrow neighbouring regions.

Each region within a player’s control has some number of pieces placed onto it. To attack a neigh-
bouring region, a player gambles some of their pieces against the opposing player’s pieces.

Risk was originally a board game, but has since been turned into an online game as well.

0.0.2 slide2
In the online variant, there is a mode known as "fog of war", where players can only see the number of
pieces that are placed on neighbouring regions. Therefore, this is only played online and in a trusted
setup, with players communicating indirectly via a server.

0.0.3 slide3
My proposition is to play fog-of-war risk in an untrusted setup, for example in a peer-to-peer network.
The same guarantees should be made as in the trusted setup, but without the mediating party (which
is the server).

0.0.4 slide4
Besides cryptography and decentralised networks being of personal interest, there are further benefits
to the expansion of cryptographic methods and their applications to federated platforms.

decentralised platforms offer many benefits to their users, such as longer lifespans due to being
community-ran. A good example of this is networks such as usenets and IRC outlasting many social
media platforms, as they still have a community backing them.

Additionally, decentralised platforms are more resistant to censorship, as they are run by their users,
and can be run from any jurisdiction, to avoid laws that may restrict the operation of platforms in
certain countries. This also helps promote anonymity and privacy, as the platform isn’t being run by a
company that may have a legal obligation to collect certain information, or may just collect information
for the sake of it.

Finally, the main benefit is that decentralised platforms promote user freedoms, as the code can be
modified and audited to tailor it to the user’s needs.

However, decentralised platforms are exposed to a unique set of challenges than centralised plat-
forms. Secure storage of information is difficult, and attacks against decentralised networks can still be
devastating.

For example, Tor experienced unique attacks against its infrastructure, including denial-of-service
against old tor v2 addresses, causing the network to go offline for many users.

To mitigate security risks, platforms such as torrents revert to centralisation in the form of trackers
to validate file chunks being sent via peers. The idea is that we want to avoid this centralisation as
much as is possible.

0.0.5 slide5
To achieve this, I will be using many of the standard cryptographic protocols such as AES and RSA,
but along with the Paillier cryptosystem and zero-knowledge proofs, which are some newer and less
appreciated cryptographic schemes.

The reason i will be using Paillier is that it has an interesting additive homomorphic property, where
manipulating cyphertexts actually manipulates the underlying plaintexts.

Zero-knowledge proofs are currently in use in the blockchain ledgers monero and zcash. They use
bulletproofs and zksnarks respectively to obfuscate transaction amounts, recipients and senders.

My implementation targets the web out of simplicity. This has caused some challenges that I will
address however.



2

0.0.6 slide6
My network is an emulated P2P environment using websockets. I went for an emulated environment
as it relieves me of implementing UDP hole-punching, and furthermore websockets are a simple way to
transfer data in a simple format between clients.

0.0.7 slide7
Risk relies on dice-rolling mechanics. To achieve this, I have implemented a scheme to produce shared
random values without a beacon by using commitment schemes. Each player submits some encrypted
noise, and then each player submits a decryption key to yield a random value within a known range.

0.0.8 slide8
As part of the Paillier cryptosystem, the generation of large primes is required. I implemented Rabin-
Miller with the ECMAScript 2019 BigInt standard to produce primes of 2048 bit length, for a combined
key size of 4096 bits.

0.0.9 slide9
Furthermore, I implemented the paillier cryptosystem. This came with some difficulty, as the bigint
spec is not followed correctly by major browsers.

0.0.10 slide10
Finally, I have a P2P implementation of standard risk. The map is reduced to make testing quicker.

0.0.11 slide11
The next steps for the implementation are to blend the paillier cryptosystem with the game itself to
get the fog-of-war variant. This requires the implementation of a zero-knowledge proof scheme that is
described by INSERT REFERENCE.

I also want to improve the implementation somewhat to reduce other more general attack surfaces.
For example, preventing players from stopping play by not responding to messages, which is currently an
effective strategy for a losing player. There is also some cases of modular bias that need to be removed
in the dice rolling scheme.

Further analysis is also necessary of the optimisations I made to the paillier cryptosystem, as certain
computations were subtly changed to ensure that the size of intermediary values didn’t exceed the upper
limit on big integers.

Following this, I plan to do a more general analysis of the system to check its security and benchmark.


