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1 Outline
Risk is a strategy game developed by Albert Lamorisse in 1957. It is a highly competitive
game, in which players battle for control over regions of a world map by stationing units
within their territories in order to launch attacks on neighbouring territories that are not
in their control.

2 Existing solutions
For playing games over an internet connection, multiple solutions already exist. These can
roughly be broken down into those that are centralised and those that are decentralised,
although many decentralised systems rely on federated or centralised communications for
peer discovery.

2.1 Centralised

In highly centralised networks, traffic is routed to a number of servers that are operated by
the same organisation who maintains the game or service. This is the current standard for
the majority of the internet: in fact, this is the methodology used by the official version
of Risk, playable as an app.

Without patching the executables, there is no way for a user to run their own servers, or
to connect to a third party’s server. This has two main advantages:

• Moderation. The developers can enforce their own rules through some form of
EULA, and this would be properly enforceable, as if a user is banned from the
official servers, there is no alternative.

• Security. The server acts as a trusted party, and validates all communications from
players. Hence, players cannot subvert a (properly implemented) service’s protocol.

2.2 Peer-to-peer networks

In peer-to-peer (P2P) networks, traffic may be routed directly to other peers, or servers
may be operated by third parties (sometimes called "federated networks"). This form
of communication is still popular in certain games or services, for example BitTorrent is
primarily a P2P service; and titles from the Counter-Strike series are federated, with a
wide selection of third party hosts.

The main advantage of peer-to-peer networks over centralised networks is longevity. Games
such as Unreal Tournament 99 (which is federated) still have playable servers, as the
servers are community-run, and so as long as people still wish to play the game, they will
remain online (despite the original developers no longer making any profit from the title)
[7].

However, security can often be worse in fully peer-to-peer networks than that of fully
centralised networks. Peers may send malicious communications, or behave in ways that
violate the general rules of the service. As there is no trusted server, there is no easy way
to validate communications to prevent peers from cheating.
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Some peer-to-peer services try to address issues with security. In file-sharing protocols
such as BitTorrent, a tracker supplies hashes of the file pieces to validate the file being
downloaded [5]. However, the downside of this approach is that a trusted party (in this
case the tracker) is still required. A malicious tracker could supply bad hashes, or an
outdated tracker may expose peers to security vulnerabilities.

2.3 Untrusted setups

Currently, there exists an online centralised version of the board game Risk.

I aim to apply bit-commitment schemes, zero-knowledge proofs, and homomorphic encryp-
tion to an online P2P variant of Risk, to allow peers to play the game whilst preventing
cheating and needing no trusted parties. The variant of the game that is of interest is the
"fog of war" variant, where a player cannot see the unit counts of regions besides those
that they own or are neighbouring.

3 Literature review
Centralised systems can securely perform the generation of random values, through using
a cryptographically secure random number generator on the server-side, and distributing
the values to the clients. This is how dice rolls are processed in centralised online games.
However, in a P2P system, something else must be done to simulate the randomness.

For dice rolling, we want that

• No peer can change the probable outcome of the dice (random),

• No peer can deny having rolled the dice (non-repudiation).

We apply the concept of bit commitment schemes to form these guarantees.

3.1 Bit commitment schemes

Bit commitment schemes provide a mechanism for one party to commit to some hid-
den value and reveal it later. This can be achieved through the use of commutative
cryptographic algorithms and with one-way functions.

Commutative cryptography

[23] provides a protocol using bit commitment to play poker. They offer a bit commitment
scheme using commutative encryption algorithms based on modular arithmetic. This
scheme works by each player encrypting cards, and decrypting in a different order as to
obscure the value of the actual cards until all players have decrypted.

However, almost all well-documented encryption schemes are not commutative. One
alternative is to use some well-known one-way function, such as SHA, with randomly
generated salts.

Bit commitment with one-way functions

Bit commitment schemes can also be implemented using one-way functions:
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1. The first party decides on the value m to be committed to.

2. The first party generates some random value r.

3. The first party generates and publishes some value c = H(m, r), where H is an
agreed-upon public one-way function.

4. The first party publishes m and r to the second party some time later.

5. The second party computes c′ = H(m, r) and validates that c = c′.

[2] provides a protocol for flipping fair coins "across a telephone", which is isomorphic to
selecting a random value from a set of two values. This cannot be simply repeated though
to generate numbers in the range of 1-6, as 6 is not a power of 2.

However, a similar protocol can be used where each player commits to a single value
x ∈ Z6. As the distribution of outcomes of addition in the group Zn is fair, we can then
sum the values of x committed to by both players to deduce a final value for the roll. To
decrease the amount of communications required for rolling a number of dice, a vector of
values can be used.

This protocol relies only on the ability for one party to produce random numbers. We can
consider the Z6-set on Z6: upon one party selecting x ∈ Z6, the other party’s selection is
from the group x · Z6 = {x+ 0, . . . , x+ 5} ∼= Z6. So, the potential outcomes only require
one party to select randomly.

If both parties were to collude and generate non-randomly, this protocol falls through.
A potential way around this is to involve other players in the protocol: the same rule
applies of only a single player needs to be selecting randomly to produce random outputs.
Therefore, so long as there are non-colluding players, this should protect against basic
collusion.

3.2 Zero-knowledge proofs

Zero-knowledge proofs form a subset of minimum disclosure proofs, and beyond that, a
subset of interactive proofs. Zero-knowledge proofs are defined by three properties:

• Completeness. If the conjecture is true, an honest verifier will be convinced of its
truth by a prover.

• Soundness. If the conjecture is false, a cheating prover cannot convince an honest
verifier (except with some small probability).

• Zero-knowledge. This is the condition for a minimum disclosure proof to be
considered zero-knowledge. If the conjecture is true, the verifier cannot learn any
other information besides the truthfulness.

Zero-knowledge proofs are particularly applicable to the presented problem. They primarily
solve two problems:

• The disclosure of some information without leaking other information.

• The proof presented can only be trusted by the verifier, and not by other parties.
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We can further formalise the general description of a zero-knowledge proof. [16] provides
a common formalisation of the concept of a zero-knowledge proof system for a language L
by stating that

• For every x ∈ L, the verifier will accept x following interaction with a prover.

• For some polynomial p and any x /∈ S, the verifier will reject x with probability at
least 1

p(|x|) .

• A verifier can produce a simulator S such that for all x ∈ L, the outputs of S(x) are
indistinguishable from a transcript of the proving steps taken with the prover on x.

The final point describes a proof as being computationally zero-knowledge. Some stronger
conditions exist, which describe the distributions of the outputs of the simulator versus
the distributions of the outputs of interaction with the prover.

• Perfect. A simulator produced by a verifier produces outputs that are distributed
identically to real transcripts.

• Statistical. A simulator produced by a verifier gives transcripts distributed identi-
cally, except for some constant number of exceptions.

Some proofs described are honest-verifier zero-knowledge proofs. In these circumstances,
the verifier is required to act in accordance with the protocol for the simulator distribu-
tion to behave as expected. This imposes a significant issue: a malicious verifier may
intentionally produce challenges that reveal more information.

One solution to this is to transform a proof into a non-interactive zero-knowledge proof.
The Fiat-Shamir transformation [9] converts an interactive zero-knowledge proof into
a non-interactive zero-knowledge proof. In this process, the ability for a verifier to
behave maliciously is lost, as the verifier no longer produces challenges themselves. This
relies strongly upon the random-oracle model however. As the random-oracle model is
not realistically attainable, it must be approximated, typically by a cryptographic hash
function. This introduces greater ability for the prover to cheat if they know a preimage
in the hash function used.

Games as graphs

The board used to play Risk can be viewed as an undirected graph. Each region is a node,
with edges connecting it to the adjacent regions. For convenience, we also consider the
player’s hand to be a node, which has all units not in play placed upon it.

Furthermore, the actions taken when playing the game can be seen as constructing new
edges on a directed weighted graph. This makes us interested in the ability to prove that
the new edges conform to certain rules.

The main game protocol can be considered as the following graph mutations for a player
P :

• Reinforcement. A player updates the weight on some edges of the graph that lead
from the hand node HP to region nodes R1, . . . , Rn in their control.

– Any adjacent players will then need to undergo proving the number of units on
neighbouring regions.
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• Attack. Player P attacks RB from RA. In the event of losing units, the player
updates the edge on the graph from RA to the hand node HP .

In the event of winning the attack, the player updates the edge from RA to RB to
ensure some non-zero amount of units is located in the region.

• Unit movement. The player updates an edge from one region R1 to another
neighbouring region R2.

The goal is then to identify ways to secure this protocol by obscuring the edges and
weights, whilst preventing the ability for the player to cheat.

Graphs & zero-knowledge proofs

[11] identifies methods to construct zero-knowledge proofs for two graphs being isomorphic
or non-isomorphic.

Identifying Risk as a graph therefore enables us to construct isomorphisms as part of
the proof protocol. For example, when a player wishes to commit to a movement, it is
important to prove that the initial node and the new node are adjacent. This can be
proven by communicating isomorphic graphs, and constructing challenges based on the
edges of the original graph.

Adjacency proofs

Proving adjacency of two nodes is akin to proving isomorphism of two graphs. A protocol
using challenges could be constructed as follows:

1. The prover commits a new edge between two nodes.

2. The prover constructs an isomorphic graph to the game, and encrypts the edges.

3. The verified challenges either:

• That the graphs are isomorphic.

• That the new edge is valid.

4. The prover sends a total decryption key for the graph’s nodes, to prove isomorphism
to the game board; or a decryption key for the new edge to the isomorphism, to
prove adjacency.

These challenges restrict the ability for the prover to cheat: if the two nodes they
are committing to are not adjacent, either the prover will need to commit an invalid
isomorphism (detected by challenge 1), or lie about the edge they have committed (detected
by challenge 2).

Selection between two challenges is the ideal number of challenges to use, as the probability
of cheating being detected is 1

2
. Using more challenge options (e.g, n) means the likelihood

of the prover cheating a single challenge reduces to 1
n
. This would require much larger

numbers of communications to then convince the verifier to the same level of certainty.
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Cheating with negative values

Zerocash is a ledger system that uses zero-knowledge proofs to ensure consistency and
prevent cheating. Ledgers are the main existing use case of zero-knowledge proofs, and
there are some limited similarities between ledgers and Risk in how they wish to obscure
values of tokens within the system.

Publicly-verifiable preprocessing zero-knowledge succinct non-interactive arguments of
knowledge (zk-SNARKs) are the building blocks of Zerocash [1], and its successor Zcash.
A zk-SNARK consists of three algorithms: KeyGen, Prove, Verify.

These are utilised to construct and verify transactions called POURs. A POUR takes, as input,
a certain "coin", and splits this coin into multiple outputs whose values are non-negative
and sum to the same value as the input. The output coins may also be associated with
different wallet addresses.

Zerocash then uses zk-SNARKs as a means to prove that the value of the inputs into a
POUR is the same as the value of the outputs. This prevents users from generating "debt",
or from generating value without going through a minting process (also defined in the
Zerocash spec).

Ensuring consistency of weights

A similar issue appears in the proposed system: a cheating player could update the weights
on their graph to cause a region to be "in debt". Therefore, we need the protocol to
ensure players prove that the sum of all edges is equal to how many units the player has
in play (a well-known value).

Additive homomorphic cryptosystems

Some cryptosystems admit an additive homomorphic property: that is, given the public
key and two encrypted values σ1 = E(m1), σ2 = E(m2), the value σ1 + σ2 = E(m1 +m2)
is the ciphertext of the underlying operation.

[19] defined a cryptosystem based on composite residuosity classes, which expresses this
property. [6, Section 5.2] demonstrates an honest-verifier zero-knowledge proof for proving
a given value is 0. Hence, clearly, proving a summation a+ b = v can be performed by
proving v − a− b = 0 in an additive homomorphic cryptosystem.

So, using some such scheme to obscure edge weights should enable verification of the edge
values without revealing their actual values.

Reducing communication

In the presented algorithms, interaction is performed fairly constantly, leading to a large
number of communications. This will slow the system considerably, and make proofs
longer to perform due to network latency.

An alternative general protocol is the Σ-protocol [12]. In the Σ-protocol, three communi-
cations occur:

• The prover sends the conjecture.
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• The verifier sends a random string.

• The prover sends some proofs generated using the random string.

This reduces the number of communications to a constant, even for varying numbers of
challenges.

The Fiat-Shamir heuristic [9] provides another method to reduce communication by
constructing non-interactive zero-knowledge proofs using a random oracle. For ledgers,
non-interactive zero-knowledge proofs are necessary, as the ledger must be resilient to a
user going offline. This is not the same in our case, however non-interactive zero-knowledge
proofs are still beneficial. The amount of communications can be reduced significantly,
and it is easier to write code that can settle a non-interactive proof than an interactive
proof.

The downside of using the Fiat-Shamir heuristic in our implementation is that any third
party can verify proofs. In some situations, we do not want this to be the case.

Set membership proofs

Another approach to the problem is to use set membership, which is a widely considered
problem in zero-proof literature. In this case, each region would be associated with a set
of units from a public "pool" of units. Then, a player needs to prove the cardinality of
a set, and the uniqueness/distinctness of its members. A number of constructs exist for
analysing and proving in obscured sets.

4 Implementation
The implementation provided uses WebSockets as the communication primitive. This is
therefore a centralised implementation. However, no verification occurs in the server code,
which instead simply "echoes" messages received to all connected clients.

Despite this approach being centralised, it does emulate a fully peer-to-peer environment,
and has notable benefits:

• It is faster to develop, use, and test than using a physical system such as mail;

• There is no need for hole-punching or port-forwarding;

• WebSockets are highly flexible in how data is structured and interpreted.

In particular, the final point allows for the use of purely JSON messages, which are readily
parsed and processed by the client-side JavaScript.

4.1 Message structure

Messages are given a fixed structure to make processing simpler. Each JSON message
holds an author field, being the sender’s ID; a message ID to prevent replay attacks and
associate related messages; and an action, which at a high level dictates how each client
should process the message.

The action more specifically is one of ANNOUNCE, DISCONNECT, KEEPALIVE, RANDOM, PROOF,
and ACT. The first three of these are used for managing the network by ensuring peers are
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aware of each other and know the state of the network. RANDOM and PROOF are designated
to be used by sub-protocols defined later on. ACT is used by players to submit actions for
their turn during gameplay.

Each message is also signed to verify the author. This is a standard application of RSA.
A hash of the message is taken, then encrypted with the private key. This can be verified
with the public key.

Players trust RSA keys on a trust-on-first-use (TOFU) basis. TOFU is the same protocol
as used by Gemini [25]. The main issue with TOFU is that if a malicious party intercepts
the first communication, they may substitute the RSA credentials transmitted by the
intended party, resulting in a man-in-the-middle attack.

4.2 Paillier cryptosystem

Similar to RSA, Paillier requires the calculation of two large primes for the generation
of public and private key pairs. ECMAScript typically stores integers as floating point
numbers, giving precision up to 253. This is clearly inappropriate for the generation of
sufficiently large primes.

In 2020, ECMAScript introduced BigInt [26], which are, as described in the spec,
"arbitrary precision integers". Whilst this does not hold true in common ECMAScript
implementations (such as Chrome’s V8), these "big integers" still provide sufficient
precision for the Paillier cryptosystem, given some optimisations and specialisations are
made with regards to the Paillier algorithm and in particular the modular exponentiation
operation.

It must be noted that BigInt is inappropriate for cryptography in practice, due to the
possibility of timing attacks as operations are not necessarily constant time [26]. In
particular, modular exponentiation is non-constant time, and operates frequently on secret
data. A savvy attacker may be able to use this to leak information about an adversary’s
private key; however, as decryption is not performed, this risk is considerably reduced as
there is less need to perform optimisations based on Chinese remainder theorem which
would require treating the modulus n as its two components p and q.

4.3 Modular exponentiation

As BigInt’s V8 implementation does not optimise modular exponentiation, we employ
the use of addition chaining, as described in [21]. Addition chaining breaks a modular
exponentiation into repeated square-and-modulo operations, which are computationally
inexpensive to perform.

The number of operations is dependent primarily on the size of the exponent. For an
exponent of bit length L, somewhere between L and 2L multiply-and-modulo operations
are performed, which gives overall a logarithmic time complexity supposing bit-shifts and
multiply-and-modulo are constant time operations.

4.4 Generating large primes

Generating primes is a basic application of the Rabin-Miller primality test [20]. This
produces probabilistic primes, however upon completing sufficiently many rounds of
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verification, the likelihood of these numbers actually not being prime is dwarfed by the
likelihood of some other failure, such as hardware failure.

4.5 Public key

In the Paillier cryptosystem, the public key is a pair (n, g) where n = pq for primes p, q
satisfying gcd(pq, (p− 1)(q − 1)) = 1 and g ∈ Z∗

n2 . We restrict the range of plaintexts m
to m < n.

The Paillier cryptosystem is otherwise generic over the choice of primes p, q. However, by
choosing p, q of equal length, the required property of pq and (p− 1)(q− 1) being coprime
is guaranteed.

Proposition 4.1. For p, q prime of equal length, gcd(pq, (p− 1)(q − 1)) = 1.

Proof. Without loss of generality, assume p > q. Suppose gcd(pq, (p − 1)(q − 1)) ̸= 1.
Then, q | p− 1. However, the bit-lengths of p, q are identical. So 1

2
(p− 1) < q. This is

a contradiction to q | p− 1 (as 2 is the smallest possible divisor), and so we must have
gcd(pq, (p− 1)(q − 1)) = 1 as required.

As the prime generation routine generates primes of equal length, this property is therefore
guaranteed. The next optimisation is to select the public parameter g = 1 + n.

Proposition 4.2. 1 + n ∈ Z∗
n2.

Proof. We see that (1 + n)n ≡ 1 mod n2 from binomial expansion. So 1 + n is invertible
as required.

The selection of such g is ideal, as the binomial expansion property reduces the number
of calculations needed during modular exponentiation. Clearly, from the same result,
gm = 1+mn. This operation is far easier to perform than a general modular exponentiation,
as it fits within the valid range of the BigInt type, so no intermediary steps are needed
to perform the computation.

4.6 Encryption

In the original Paillier scheme, ciphertexts are computed as c = gmrn mod n2 for r < n
some random secret value. To make this easier to compute, we can compute the equivalent
value c = (rn mod n2) · (gm mod n2) mod n2.

4.7 Private key

The private key is the value of the Carmichael function λ = λ(n), defined as the exponent
of the group Z∗

n. From the Chinese remainder theorem, λ(n) = λ(pq) can be computed as
lcm(λ(p), λ(q)). From Carmichael’s theorem, this is equivalent to lcm(ϕ(p), ϕ(q)), where
ϕ is Euler’s totient function. Hence, from the definition of Euler’s totient function, and as
p, q are equal length, λ = (p− 1)(q − 1) = ϕ(n).

We are also interested in the ability to compute µ = λ−1 mod n as part of decryption.
Fortunately, this is easy, as from Euler’s theorem, λϕ(n) ≡ 1 mod n, and so we propose
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µ = λϕ(n)−1 mod n. As ϕ(n) is well-known to us, we get µ = λ(p−1)(q−1) mod n, a
relatively straight-forward computation.

4.8 Decryption

Let c be the ciphertext. The corresponding plaintext is computed as m = L(cλ mod n2)·µ
mod n, where L(x) = x−1

n
. This operation can be optimised by applying Chinese remainder

theorem. However, in the application presented, decryption is not used and is only useful
as a debugging measure. So this need not be optimised.

4.9 Implementation details

Paillier is implemented by four classes: PubKey, PrivKey, Ciphertext, and ReadOnlyCiphertext.
PubKey.encrypt converts a BigInt into either a Ciphertext or a ReadOnlyCiphertext
by the encryption function above. The distinction between these is that a ReadOnlyCiphertext
does not know the random r that was used to form it, and so is created by decrypting a
ciphertext that originated with another peer. A regular Ciphertext maintains knowledge
of r and the plaintext it enciphers. This makes it capable of proving by the scheme
presented below.

4.10 Shared random values

A large part of Risk involves random behaviour dictated by rolling some number of dice.
To achieve this, some fair protocol must be used to generate random values consistently
across each peer without any peer being able to manipulate the outcomes.

This is achieved through bit-commitment and properties of Zn. The protocol for two peers
is as follows, and generalises to n peers.

Protocol 4.3 (Shared random values).
Peer A Peer B

Generate random
noise NA, random key
kA

Generate random
noise NB, random key
kB

EkA(NA)

EkB(NB)

kA

kB

Compute NA +NB Compute NA +NB

To generalise this to n peers, we ensure that each peer waits to receive all encrypted noises
before transmitting their decryption key.
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Depending on how NA + NB is then turned into a random value within a range, this
system may be manipulated by an attacker who has some knowledge of how participants
are generating their noise. As a basic example, suppose a random value within range is
generated by taking NA +NB mod 3, and participants are producing 2-bit noises. An
attacker could submit a 3-bit noise with the most-significant bit set, in which case the
probability of the final result being a 1 are significantly higher than the probability of a 0
or a 2. This is a typical example of modular bias. To avoid this problem, peers should
agree beforehand on the number of bits to transmit. Addition of noise will then operate
modulo 2ℓ, where ℓ is the agreed-upon number of bits.

The encryption function used must also guarantee the integrity of decrypted ciphertexts
to prevent a malicious party creating a ciphertext which decrypts to multiple valid values
through using different keys.

Proposition 4.4. With the above considerations, the scheme shown is not manipulable
by a single cheater.

Proof. Suppose P1, . . . , Pn−1 are honest participants, and Pn is a cheater with a desired
outcome.

In step 1, each participant Pi commits Eki(Ni). The cheater Pn commits a constructed
noise Ekn(Nn).

The encryption function Ek holds the confidentiality property: that is, without k, Pi cannot
retrieve m given Ek(m). So Pn’s choice of Nn cannot be directed by other commitments.

The final value is dictated by the sum of all decrypted values. Pn is therefore left in a
position of choosing Nn to control the outcome of a+Nn, where a is selected uniformly
at random from the abelian group Z2ℓ for ℓ the agreed upon bit length.

As every element of this group is of order 2ℓ, the distribution of a +Nn is identical no
matter the choice of Nn. So Pn maintains no control over the outcome of a+Nn.

This extends inductively to support n− 1 cheating participants, even if colluding. Finally,
we must consider how to reduce random noise to useful values.

4.11 Avoiding modular bias

The typical way to avoid modular bias is by resampling. To avoid excessive communication,
resampling can be performed within the bit sequence by partitioning into blocks of n bits
and taking blocks until one falls within range. This is appropriate in the presented use
case as random values need only be up to 6, so the probability of consuming over 63 bits
of noise when resampling for a value in the range 0 to 5 is

(
1
4

)21 ≈ 2.3× 10−13.

4.12 Application to domain

Random values are used in two places.

• Selecting the first player.

• Rolling dice.
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As this protocol must run many times during a game, we consider each operation of the
protocol as a "session", each of which has a unique name that is derived from the context.
This has another benefit as the unique name can then be used with the Web Lock API to
prevent race conditions that may occur due to this protocol running asynchronously.

4.13 Proof system

The first proof to discuss is that of [6, Section 5.2], in which the authors give an honest-
verifier protocol to prove knowledge that a ciphertext is an encryption of zero.

The proof system presented is a Schnorr-style interactive proof for a given ciphertext c
being an encryption of zero.

Prover Verifier

r ∈ Z∗
n with c = rn mod n2

c

Choose random r∗ ∈ Z∗
n

a = (r∗)n mod n2

Choose random e

e

z = r∗re mod n

Verify z, c, a coprime to n
Verify zn ≡ ace mod n2

A proof for the following homologous problem can be trivially constructed: given some
ciphertext c = gmrn mod n2, prove that the text cg−m mod n2 is an encryption of 0.
The text cg−m is constructed by the verifier. The prover then proceeds with the proof
as normal, since cg−m is an encryption of 0 under the same noise as the encryption of m
given.

4.14 Implementation details

Proofs of zero use messages labelled as "PROOF" to resolve, and resolve between two
parties. The proof is initiated by the verifier as part of the game protocol, who sends a
request containing the region to prove. Initiating proofs on the verifier side has benefits
to synchronisation, and helps to reduce race conditions, as the proof is only requested
after the verifier has updated their state.

The prover responds with the fields conjecture: int and a: str (where a is the
serialisation of a BigInt representing a and conjecture is the proposed plaintext).
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The prover then waits on an event listener to respond to the verifier’s challenge in a
non-blocking way when received.

The verifier receives the message above, and responds with a random challenge selected
by generating a cryptographically secure pseudorandom number of 2048 bits, and then
dropping the LSB. Using 2047 bits guarantees that the challenge is smaller than p or q, as
is suggested in the original paper. The verifier then waits on an event listener to receive
the prover’s proof.

Verifying the proof is a simple application of extended Euclidean algorithm to check
coprimality, and a modular exponentiation and reduction to check the final equivalence.
The ciphertext on the verifier’s instance is then tagged with the proven plaintext (should
the proof succeed). This tag is removed in the case that the ciphertext is updated.

4.15 Application to domain

Players should prove a number of properties of their game state to each other to ensure
fair play. These are as follows.

1. The number of reinforcements placed during the first stage of a turn.

2. The number of units on a region neighbouring another player.

3. The number of units available for an attack/defence.

4. The number of units lost during an attack/defence (including total depletion of
units and loss of the region).

5. The number of units moved when fortifying.

(2) and (4) are both covered by the proof above. (3) is okay between two players, as it
is a subcase of (2). But in the case of more players, the availability of units should be
proven. One way to achieve this is with a range proof.

[3] demonstrates a proof that some given ciphertext lies within an interval [−ℓ, 2ℓ], where
ℓ is some public value. This proof can easily be manipulated into a proof that a value lies
within the interval [n, 3ℓ+ n] from the additive homomorphic property. By selecting a
sufficiently high ℓ and appropriate n, this proof is appropriate for proving to other players
that the number of units being used in an attack is valid.

4.16 Range proof

[3]’s proof is a multi-round proof more similar in structure to the graph isomorphism
proof presented in [11]. We select public parameter ℓ to be some sufficiently high value
that a player’s unit count should not exceed during play: an appropriate choice may be
1000. Select n as the number of units that the player is defending with, or in the case
of attacking, let n be the number of units that the player is attacking with plus 1 (as is
required by the rules of Risk).

4.17 Cheating with negative values

Using just the additive homomorphic property to guarantee (1) opens up the ability for a
player to cheat by using negative values. This is a severe issue, as potentially the cheat
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could be completely unnoticed even in the conclusion of the game. To overcome this, we
need a new protocol that is still in zero-knowledge, but proves a different property of a
player’s move.

One consideration is to use a range proof as above. The full proof would then be the
combination of a proof that the sum of all ciphertexts is 1, and the range of each ciphertext
is as tight as possible, which is within the range [0, 3]. This is acceptable in the specific
application, however we can achieve a better proof that is similar in operation to [3].

Instead of proving a value is within a range, the prover will demonstrate that a bijection
exists between the elements in the reinforcement set and a challenge set.

Protocol 4.5. The prover transmits the set

S = {(R1, E(n1, r1)), . . . , (RN , E(nN , rN))}

as their reinforcement step. Verifier wants that the second projection of this set maps to 1
exactly once.

Run t times in parallel:

1. Prover transmits {(ψ(Ri), E(ni, r
∗
i )) | 0 < i ≤ N} where ψ is a random bijection on

the regions.

2. Verifier chooses a random c ∈ {0, 1}.

(a) If c = 0, the verifier requests the definition of ψ. They then compute the
product of the E(x, ri) · E(x, r∗i ) and verify proofs that each of these is zero.

(b) If c = 1, the verifier requests a proof that each E(ni, r
∗
i ) is as claimed.

This protocol has the following properties, given that the proof of zero from before also
holds the same properties [6].

• Complete. The verifier will clearly always accept S given that S is valid.

• Sound. A cheating prover will trick a verifier with probability 2−t. So select a
sufficiently high t.

• Zero-knowledge. Supposing each ψ, ri, and r∗i are generated in a truly random
manner, the verifier gains no additional knowledge of the prover’s private state.

Additionally, we can consider this protocol perfect zero-knowledge.

Proposition 4.6. In the random oracle model, Protocol 4.5 is perfect zero-knowledge.

Proof. To prove perfect zero-knowledge, we require a polynomial-time algorithm T ∗ such
that for all verifiers and for all valid sets S, the set of transcripts T (P, V, S) = T ∗(S), and
the distributions are identical.

Such a T ∗ can be defined for any S.

1. Choose a random ψ′ from the random oracle.

2. Choose random (r∗i )
′ from the random oracle.

3. Encrypt under P ’s public-key.
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4. Verifier picks c as before.

5. Perform proofs of zero, which are also perfect zero-knowledge from [6].

This gives T ∗ such that T ∗(S) = T (P, V, S), and the output distributions are identical.
Hence, this proof is perfect zero-knowledge under random oracle model.

4.18 Optimising

It is preferred that these proofs can be performed with only a few communications: this
issue is particularly prevalent here as this protocol requires multiple rounds to complete.
The independence of each round on the next is a beneficial property, as it means the proof
can be performed in parallel, so the prover transmits all of their ψ’s, then the verifier
transmits all of their challenges. However, still is the issue of performing proofs of zero.

We can apply the Fiat-Shamir heuristic [9] to make proofs of zero non-interactive. In
place of a random oracle, we use a cryptographic hash function. We take the hash of
some public parameters to prevent cheating by searching for some values that hash in a
preferable manner. In this case, selecting e = H(g,m, a) is a valid choice. To get a hash of
desired length, an extendable output function such as SHAKE256 [18] could be used. The
library jsSHA [4] provides an implementation of SHAKE256 that works within a browser.

5 Review

5.1 Random oracles

Various parts of the implementation use the random oracle model: in particular, the
zero-knowledge proof sections. The random oracle model is theoretic, as according to the
Church-Turing hypothesis, a machine cannot produce infinite truly random output with
only finite input.

The random oracle model is used for two guarantees. The first is in the construction
of truly random values that will not reveal information about the prover’s state. In
practice, a cryptographically secure pseudo-random number generator will suffice for this
application, as CSPRNGs typically incorporate environmental data to ensure outputs are
unpredictable [14].

The second is to associate a non-random value with a random value. In practice, a
cryptographic hash function such as SHAKE is used. This gives appropriately pseudo-
random outputs that appear truly random, and additionally are assumed to be preimage
resistant: a necessary property when constructing non-interactive proofs in order to
prevent a prover manipulating the signature used to derive the proof.

5.2 Efficiency

Storage complexity

In this section, let N be the size in bits of the modulus n. This is likely one of 1024, 2048,
or 4096; depending on the size of the primes used to form the modulus.
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Paillier ciphertexts are constant size, each 2N in size (as they are taken modulo n2). This
is small enough for the memory and network limitations of today.

The interactive proof of zero uses two Paillier ciphertexts (each size 2N), a challenge of
size N , and a proof statement of size N . In total, this is a constant size of 6N .

On the other hand, the non-interactive variant needs not communicate the challenge (as
it is computed as a function of other variables). So the non-interactive proof size is 5N .

The non-interactive Protocol 4.5 requires multiple rounds. Assume that we use 48 rounds:
this provides a good level of soundness, with a cheat probability of

(
1
2

)−48 ≈ 3.6× 10−15.
Additionally, assume that there are five regions to verify. Each prover round then requires
five Paillier ciphertexts, and each verifier round five non-interactive proofs of zero plus
some negligible amount of additional storage for the bijection. This results in a proof
size of (10N + 10N)× 48 = 960N . For key size N = 2048, this is 240kB. This is a fairly
reasonable size for memory and network, but this value may exceed what can be placed
within a processor’s cache, leading to potential slowdown during verification.

This could be overcome by reducing the number of rounds, which comes at the cost of
increasing the probability of cheating. In a protocol designed to only facilitate a single
game session, this may be acceptable to the parties involved. For example, reducing the
number of rounds to 24 will increase the chance of cheating to

(
1
2

)−24 ≈ 6.0× 10−8, but
the size would reduce by approximately half.

This is all in an ideal situation without compression or signatures: in the implementation
presented, the serialisation of a ciphertext is larger than this, since it serialises to a string
of the hexadecimal representation and includes a digital signature for authenticity. In
JavaScript, encoding a byte string as hexadecimal should yield approximately a four
times increase in size, as one byte uses two hexadecimal characters, which are encoded as
UTF-16. Results for this are shown in Table 3. Some potential solutions are discussed
here.

Compression. One solution is to use string compression. String compression can reduce
the size considerably, as despite the ciphertexts being random, the hex digits only account
for a small amount of the UTF-8 character space. LZ-String, a popular JavaScript string
compression library, can reduce the size of a single hex-encoded ciphertext to about 35%
of its original size. This will result in some slowdown due to compression time however,
but this is somewhat negligible in the face of the time taken to produce and verify proofs
in the first place.

Message format. Another solution is to use a more compact message format, for example
msgpack [17] (which also has native support for binary literals).

Smaller key size. The size of ciphertexts depends directly on the size of the key. Using
a smaller key will reduce the size of the ciphertexts linearly.

Time complexity

It is remarked that Paillier encryption performs considerably slower than RSA on all key
sizes. [19] provides a table of theoretic results, suggesting that Paillier encryption can be
over 1,000 times slower than RSA for the same key size.
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Timing results versus RSA are backed experimentally by my implementation. The following
benchmarking code was executed.

console.log("Warming up")

for (let i = 0n; i < 100n; i++) {
keyPair.pubKey.encrypt(i);

}

console.log("Benching")

performance.mark("start")
for (let i = 0n; i < 250n; i++) {

keyPair.pubKey.encrypt(i);
}
performance.mark("end")

console.log(performance.measure("duration", "start", "end").duration)

Performing 250 Paillier encrypts required 47,000ms. On the other hand, performing 250
RSA encrypts required just 40ms. Results are shown in Table 1.

The speed of decryption is considerably less important in this circumstance, as Paillier
ciphertexts are not decrypted during the execution of the program.

Public parameter. The choice of the public parameter g can improve the time complexity
by removing the need for some large modular exponentiation. Selection of g = n+ 1 is
good in this regard, as binomial theorem allows the modular exponentiation gm mod n2

to be reduced to the computation 1 + nm mod n2.

Caching. As the main values being encrypted are 0 or 1, a peer could maintain a cache
of encryptions of these values and transmit these instantly. Caching may be executed in a
background "web worker". A consideration is whether a peer may be able to execute a
timing-related attack by first exhausting a peer’s cache of a known plaintext value, and
then requesting an unknown value and using the time taken to determine if the value was
sent from the exhausted cache or not.

Taking this idea further, one may simply cache rn for a number of randomly generated r
(as this is the slowest part of encryption). This eliminates the timing attack concern, and
grants full flexibility with the values being encrypted.

Alternative Paillier scheme. [13, Section 2.3.1] presents an optimised encryption
scheme based on the subgroup of elements with Jacobi symbol +1. This forms a group as
the Jacobi symbol is multiplicative, being a generalisation of the Legendre symbol.

Using this scheme alone reduced the time to encrypt by a half. Greater optimisations are
possible through pre-computation of fixed-base exponentials, but the time and memory
consumption of this exceeds what my browser was capable of for key sizes of 4096-bit and
greater.

In practice, using the scheme alone gave gains close to a reduction by a third, since in the
modified scheme additional computation must be performed to attain the r that would
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work with normal Paillier, in order to perform the zero-knowledge proofs from before.

Using pre-computation on top of this yielded much greater gains, being around four times
faster. This is likely due to avoiding the slowdown from general overhead around my
JavaScript implementation of modular exponentiation.

Other research such as [15] suggests ways to speed up encryption further that could be
utilised.

Smaller key size. The complexity of Paillier encryption increases with key size. Using a
smaller key could considerably reduce the time taken [19].

I tested this on top of the alternative Paillier scheme from above. This resulted in linear
reductions in encryption time: encryption under a 1024-bit modulus took a sixth of the
amount of time as under a 2048-bit modulus, and encryption under a 2048-bit modulus
took a sixth of the amount of time as under a 4096-bit modulus.

Vectorised plaintexts. The maximum size of a plaintext is |n|: in our case, this is
4096 bits. By considering this as a vector of 128 32-bit values, peers could use a single
ciphertext to represent their entire state. [22] uses this process to allow embedded devices
to make use of the homomorphic properties of Paillier.

Protocol 4.5 can be modified by instead testing that the given ciphertext is contained
in a set of valid ciphertexts. There would still be a large number of Paillier encryptions
required during this proof.

The other proofs do not translate so trivially to this structure however. In fact, in some
contexts the proofs required may be considerably more complicated, becoming round-based
proofs which may be slower and use more Paillier encryptions to achieve the same effect.

Optimising language. An optimising language may be able to reduce the time taken to
encrypt. On the browser, this could involve using WASM as a way to execute compiled
code within the browser, although WASM does not always outperform JavaScript.

5.3 Complexity results

All measurements were taken on Brave 1.50.114 (Chromium 112.0.5615.49) 64-bit, using
a Ryzen 5 3600 CPU: a consumer CPU from 2019. Absolute timings are extremely
dependent on the browser engine: for example Firefox 111.0.1 was typically 4 times slower
than the results shown.

Table 1: Time to encrypt
Modulus size Naïve encrypt Jacobi encrypt Jacobi encrypt

with pre-
computation

RSA encrypt

|n| = 1024 6.0ms 4ms 1.4ms 0.015ms
|n| = 2048 34ms 22ms 7.6ms 0.040ms
|n| = 4096 189ms 128ms – 0.093ms

5.4 Quantum resistance

Paillier is broken if factoring large numbers is computationally feasible [19, Theorem 9].
Therefore, it is vulnerable to the same quantum threat as RSA is, which is described by
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Table 2: Timea to process proofs

Modulus size Proof-of-zero non-interactive Protocol 4.5 with t = 24 Protocol 4.5 with t = 48

Prover Verifier Prover Verifier Prover Verifier

|n| = 1024 10ms 18ms 1,420ms 2,140ms 2,900ms 4,270ms
|n| = 2048 44ms 68ms 6,390ms 8,140ms 13,200ms 16,200ms
|n| = 4096 225ms 292ms 41,500ms 34,400ms 83,200ms 68,400ms

a |n| = 4096 uses a less-optimised encryption method, as the browser frequently timed out attempting to
pre-compute for the more-optimised version.

Table 3: Byte sizeb of encoded proofs

Modulus size Proof-of-zero non-interactive Protocol 4.5 with t = 24 Protocol 4.5 with t = 48

JSON with
LZ-String

JSON with
LZ-String

JSON with
LZ-String

|n| = 1024 1,617B 576B 338,902B 95,738B 673,031B 186,857B
|n| = 2048 3,153B 1,050B 662,233B 187,333B 1,315,463B 365,086B
|n| = 4096 6,226B 1,999B 1,315,027B 368,646B 2,609,131B 721,891B

b 1 UTF-16 character, as used by ECMAScript [8, Section 6.1.4], is 2 or more bytes.

[24]. Alternative homomorphic encryption schemes are available, which are believed to be
quantum-resistant, as they are based on lattice methods (e.g, [10]).

5.5 Honest-verifier

[6, Section 5.2] is honest-verifier. However, applying the Fiat-Shamir heuristic converts
such a proof into a general zero-knowledge proof [9, Section 5]. This means that, supposing
the choice of transform used is appropriate, Protocol 4.5 should also be general zero-
knowledge. However, the interactive proofs performed as part of the game are still only
honest-verifier, and a malicious verifier may be able to extract additional information
from the prover (such as the blinding value used: this is stated in [6, Section 5.2]).

6 Wider application
Peer-to-peer software is an area of software that has fallen somewhat out of interest in
more recent years, as online service providers can afford to run their own centralised servers
(although no doubt interest still exists: some users are preferring federated services over
centralised services, such as Mastodon, Matrix, XMPP). However, peer-to-peer solutions
still have many benefits to end users: mainly being greater user freedom. I believe that
the content presented here shows clear ways to expand peer-to-peer systems, and reduce
dependence on centralised services.

I propose some ideas which could build off the content here.

6.1 Larger scale P2P games

Presented here was a basic implementation of a reduced rule-set version of the board
game Risk. However, many other games exist that the same transformation could be
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applied to. Games of larger scale with a similar structure, such as Unciv, could benefit
from peer-to-peer networking implemented in a similar manner.

This is not without its downsides: I found that the complexity of P2P networking is far
greater than a standard centralised model. This would be a considerable burden on the
developers, and could hurt the performance of such a game. The time taken to process
and verify proofs also makes this inapplicable to games that are real-time.

6.2 Decentralised social media

The schemes presented here and in [6] could be applies to the concept of a decentralised
social media platform. Such a platform may use zero-knowledge proofs as a way to allow for
"private" profiles: the content of a profile may stay encrypted, but zero-knowledge proofs
could be used as a way to allow certain users to view private content in a manner that
allows for repudiation, and disallows one user from sharing private content to unauthorised
users.

The obvious issue is P2P data storage. Users could host their own platforms, but this
tends to lead to low adoption due to complexity for normal people. IPFS is a P2P data
storage protocol that could be considered. This poses an advantage that users can store
their own data, if they have a large amount, but other users can mirror data effectively to
protect against outages. The amount of storage can grow effectively as more users join
the network.

6.3 Handling of confidential data

The ability to prove the contents of a dataset to a second party without guaranteeing
authenticity to a third party is another potential application of the protocol presented.
Handling of confidential data is a critical concern for pharmaceutical companies, where a
data leak imposes serious legal and competitive consequences for the company. A second
party does however need some guarantee that the data received is correct. Proofs are
one way of achieving this, although other techniques such as keyed hashing may be more
effective.

Another consideration in this domain is the use of homomorphic encryption schemes to
allow a third party to process data without actually viewing the data. This protects the
data from viewing by the third party, and the processing methods from viewing by the
first party. [15] states for example that common statistical functions such as regression
can be performed on data that is encrypted under the Paillier scheme.

7 Limitations
Finally, I present a summary of other limitations that I encountered.

7.1 JavaScript

JavaScript was the incorrect choice of language for this project. Whilst the event-based
methodology was useful, I believe overall that JavaScript made development much more
difficult.
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JavaScript is a slow language. Prime generation takes a considerable amount of time, and
this extends to encryption and decryption being slower than in an implementation in an
optimising compiled language. This was seen in the results shown before.

JavaScript’s type system makes debugging difficult. It is somewhat obvious that this
problem is far worse in systems with more interacting parts. TypeScript may have been a
suitable alternative, but most likely the easiest solution was to avoid both and go with a
language that was designed with stronger typing in mind from the outset (even Python
would likely have been easier, as there is at least no issue of undefinedness, and the
language was designed with objects in mind from the start).

JavaScript is a re-entrant language: this means that the interpreter does not expose
threads or parallelism to the developer, but it may still use threads under-the-hood and
switch contexts to handle new events. This introduces the possibility of race conditions
despite no explicit threading being used. The re-entrant nature is however beneficial to a
degree, as it means that long-running code won’t cause the WebSocket to close or block
other communications from being processed.

7.2 General programming

Peer-to-peer programming requires a lot more care than client-server programming. This
makes development far slower and far more bug-prone. As a simple example, consider
the action of taking a turn in Risk. In the peer-to-peer implementation presented, each
separate peer must keep track of how far into a turn a player is, check if a certain action
would end their turn (or if its invalid), contribute in verifying proofs, and contribute in
generating randomness for dice rolls. In a client-server implementation, the server would
be able to handle a turn by itself, and could then propagate the results to the other clients
in a single predictable request.

The use of big integers leads to peculiar issues relating to signedness. This is in some
ways a JavaScript issue, but would also be true in other languages. Taking modulo n of a
negative number tends to return a negative number, rather than a number within the
range [0, n]. This leads to inconsistencies when calculating the GCD or finding Bezout
coefficients. In particular, this became an issue when trying to validate proofs of zero,
as the GCD returned −1 rather than 1 in some cases. Resolving this simply required
changing the update and encrypt functions to add the modulus until the representation
of the ciphertext was signed correctly. Whilst the fix for this was simple, having to fix
this in the first place is annoying, and using a non-numerical type (such as a byte stream)
may resolve this in general.

7.3 Resources

The peer-to-peer implementation requires more processing power and more bandwidth on
each peer than a client-server implementation would. This is the main limitation of the
peer-to-peer implementation. The program ran in a reasonable time, using a reasonable
amount of resources on the computers I had access to, but these are not representative
of the majority of people. Using greater processing power increases power consumption,
which is definitely undesirable. In a client-server implementation, even with an extra
computer, I predict that the power consumption should be lower than the peer-to-peer
implementation presented.
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