
Cryptographic protocol for playing Risk in an untrusted
setting

Jude Southworth

Bachelor of Science in Computer Science and Mathematics
The University of Bath

2023

1

1 Outline

Risk is a strategy game developed by Albert Lamorisse in 1957. It is a highly competitive game,
in which players battle for control over regions of a world map by stationing units within their
territories in order to launch attacks on neighbouring territories that are not in their control.

2 Existing solutions

For playing games over an internet connection, multiple solutions already exist. These can
roughly be broken down into those that are centralised and those that are decentralised,
although many decentralised systems rely on federated or centralised communications for peer
discovery.

2.1 Centralised

In highly centralised networks, traffic is routed to a number of servers that are operated by the
same organisation who maintains the game or service. This is the current standard for the
majority of the internet: in fact, this is the methodology used by the official version of Risk,
playable as an app.

Without patching the executables, there is no way for a user to run their own servers, or to
connect to a third party’s server. This has two main advantages:

• Moderation. The developers can enforce their own rules through some form of EULA,
and this would be properly enforceable, as if a user is banned from the official servers,
there is no alternative.

• Security. The server acts as a trusted party, and validates all communications from
players. Hence, players cannot subvert a (properly implemented) service’s protocol.

2.2 Peer-to-peer networks

In peer-to-peer (P2P) networks, traffic may be routed directly to other peers, or servers
may be operated by third parties (sometimes called "federated networks"). This form of
communication is still popular in certain games or services, for example BitTorrent is primarily
a P2P service; and titles from the Counter-Strike series are federated, with a wide selection of
third party hosts.

The main advantage of peer-to-peer networks over centralised networks is longevity. Games
such as Unreal Tournament 99 (which is federated) still have playable servers, as the servers
are community-run, and so as long as people still wish to play the game, they will remain online
(despite the original developers no longer making any profit from the title) (Eatsleeput.com,
2022).

However, security can often be worse in fully peer-to-peer networks than that of fully centralised
networks. Peers may send malicious communications, or behave in ways that violate the
general rules of the service. As there is no trusted server, there is no easy way to validate
communications to prevent peers from cheating.

Some peer-to-peer services try to address issues with security. In file-sharing protocols such as
BitTorrent, a tracker supplies hashes of the file pieces to validate the file being downloaded

2

(Cohen, 2017). However, the downside of this approach is that a trusted party (in this case
the tracker) is still required. A malicious tracker could supply bad hashes, or an outdated
tracker may expose the peer to security vulnerabilities.

2.3 Untrusted setups

Currently, there exists an online centralised version of the board game Risk.

We aim to apply bit-commitment schemes and zero-knowledge proof protocols to an online
P2P variant of Risk, to allow peers to play the game whilst preventing cheating and needing
no trusted parties. The variant of interest is the "fog of war" variant, where a player cannot
see the unit counts of regions besides those that they own or are neighbouring.

3 Literature review

Centralised systems can securely perform the generation of random values, through using a
cryptographically secure random number generator on the server-side, and distributing the
values to the clients. This is how dice rolls are processed in centralised online games. However,
in a P2P system, something else must be done to simulate the randomness.

For dice rolling, we want that

• No peer can change the probable outcome of the dice (random),

• No peer can deny having rolled the dice (non-repudiation).

We apply the concept of bit commitment schemes to form these guarantees.

3.1 Bit commitment schemes

Bit commitment schemes provide a mechanism for one party to commit to some hidden value
and reveal it later. This can be achieved through the use of commutative cryptographic
algorithms and with one-way functions.

Commutative cryptography

Shamir, Rivest and Adleman (1981) provides a protocol using bit commitment to play poker.
They offer a bit commitment scheme using commutative encryption algorithms based on
modular arithmetic. This scheme works by each player encrypting cards, and decrypting in a
different order as to obscure the value of the actual cards until all players have decrypted.

Many encryption schemes are not commutative however. One alternative is to use some
well-known one-way function, such as SHA, with randomly generated salts.

Bit commitment with one-way functions

Bit commitment schemes can also be implemented using one-way functions:

1. The first party decides on the value m to be committed to.

2. The first party generates some random value r .

3

3. The first party generates and publishes some value c = H(m, r), where H is an agreed-
upon public one-way function.

4. The first party publishes m and r to the second party some time later.

5. The second party computes c ′ = H(m, r) and validates that c = c ′.

Blum (1983) provides a protocol for flipping fair coins across a telephone, which is isomorphic
to selecting a random value from a set of two values. This cannot be simply repeated though
to generate numbers in the range of 1-6, as 6 is not a power of 2.

However, a similar protocol can be used where each player commits to a single value x ∈ Z6.
As the distribution of outcomes of addition in the group Zn is fair, we can then sum the values
of x committed to by both players to deduce a final value for the roll. To decrease the amount
of communications required for rolling a number of dice, a vector of values can be used.

This protocol relies only on the ability for one party to produce random numbers. We can
consider the Z6-set on Z6: upon one party selecting x ∈ Z6, the other party’s selection is from
the group x ·Z6 = {x + 0, ... , x + 5} ∼= Z6. So, the potential outcomes only require one party
to select randomly.

If both parties were to collude and generate non-randomly, this protocol falls through. A
potential way around this is to involve other players in the protocol: the same rule applies of
only a single player needs to be selecting randomly to produce random outputs. Therefore, so
long as there are non-colluding players, this would protect against basic collusion.

3.2 Zero-knowledge proofs

Zero-knowledge proofs form a subset of minimum disclosure proofs, and beyond that, a subset
of interactive proofs. Zero-knowledge proofs are defined by three axioms:

• Completeness. If the conjecture is true, an honest verifier will be convinced of its
truth by a prover.

• Soundness. If the conjecture is false, a cheating prover cannot convince an honest
verifier (except with some small probability).

• Zero-knowledge. This is the condition for a minimum disclosure proof to be considered
zero-knowledge. If the conjecture is true, the verifier cannot learn any other information
besides the truthfulness.

Zero-knowledge proofs are particularly applicable to the presented problem. They primarily
solve two problems:

• The disclosure of some information without leaking other information,

• The proof presented can only be trusted by the verifier, and not by other parties.

We can further formalise the general description of a zero-knowledge proof. Mohr (2007)
provides a common formalisation of the concept of a zero-knowledge proof system for a
language L by stating that

• For every x ∈ L, the verifier will accept x following interaction with a prover.

• For some polynomial p and any x /∈ S , the verifier will reject x with probability at least
1

p(|x |) .

4

• A verifier can produce a simulator S such that for all x ∈ L, the outputs of S(x) are
indistinguishable from a transcript of the proving steps taken with the prover on x .

The final point describes a proof as being computationally zero-knowledge. Some stronger
conditions exist, which describe the distributions of the outputs of the simulator versus the
distributions of the outputs of interaction with the prover.

• Perfect. A simulator produced by a verifier produces outputs that are distributed
identically to real transcripts.

• Statistical. A simulator produced by a verifier gives transcripts distributed identically,
except for some constant number of exceptions.

Some proofs described are honest-verifier zero-knowledge proofs. In these circumstances, the
verifier is required to act in accordance with the protocol for the simulator distribution to
behave as expected. We consider verifiers as honest, as it appears they may only impede
themselves by acting dishonestly.

Games as graphs

The board used to play Risk can be viewed as an undirected graph. Each region is a node, with
edges connecting it to the adjacent regions. For convenience, we also consider the player’s
hand to be a node, which has all units not in play placed upon it.

Furthermore, the actions taken when playing the game can be seen as constructing new edges
on a directed weighted graph. This makes us interested in the ability to prove that the new
edges conform to certain rules.

The main game protocol can be considered as the following graph mutations for a player P :

• Reinforcement. A player updates the weight on some edges of the graph that lead
from the hand node HP to region nodes R1, ... ,Rn in their control.

– Any adjacent players will then need to undergo proving the number of units on
neighbouring regions.

• Attack. Player P attacks RB from RA. In the event of losing units, the player updates
the edge on the graph from RA to the hand node HP .

In the event of winning the attack, the player updates the edge from RA to RB to ensure
some non-zero amount of units is located in the region.

• Unit movement. The player updates an edge from one region R1 to another neigh-
bouring region R2.

The goal is then to identify ways to secure this protocol by obscuring the edges and weights,
whilst preventing the ability for the player to cheat.

Graphs & ZKPs

Goldreich, Micali and Wigderson (1991) identifies methods to construct zero-knowledge proofs
for two graphs being isomorphic or non-isomorphic.

Identifying Risk as a graph therefore enables us to construct isomorphisms as part of the proof
protocol. For example, when a player wishes to commit to a movement, it is important to prove

5

that the initial node and the new node are adjacent. This can be proven by communicating
isomorphic graphs, and constructing challenges based on the edges of the original graph.

Adjacency proofs

Proving adjacency of two nodes is akin to proving isomorphism of two graphs. A protocol
using challenges could be constructed as follows:

1. The prover commits a new edge between two nodes.

2. The prover constructs an isomorphic graph to the game, and encrypts the edges.

3. The verified challenges either:

• That the graphs are isomorphic.

• That the new edge is valid.

4. The prover sends a total decryption key for the graph’s nodes, to prove isomorphism
to the game board; or a decryption key for the new edge to the isomorphism, to prove
adjacency.

These challenges restrict the ability for the prover to cheat: if the two nodes they are committing
to are not adjacent, either the prover will need to commit an invalid isomorphism (detected by
challenge 1), or lie about the edge they have committed (detected by challenge 2).

Selection between two challenges is the ideal number of challenges to use, as the probability
of cheating being detected is 1

2
. Using more challenge options (e.g, n) means the likelihood of

the prover cheating a single challenge reduces to 1
n
. This would require much larger numbers

of communications to then convince the verifier to the same level of certainty.

Adjacency proofs are necessary to ensure that players move units fairly.

Cheating with negative values

Zerocash is a ledger system that uses zero-knowledge proofs to ensure consistency and prevent
cheating. Ledgers are the main existing use case of zero-knowledge proofs, and there are some
limited similarities between ledgers and Risk in how they wish to obscure values of tokens
within the system.

Publicly-verifiable preprocessing zero-knowledge succinct non-interactive arguments of knowl-
edge (zk-SNARKs) are the building blocks of Zerocash (Ben Sasson et al., 2014), and its
successor Zcash. A zk-SNARK consists of three algorithms: KeyGen, Prove, Verify.

These are utilised to construct and verify transactions called POURs. A POUR takes, as input, a
certain "coin", and splits this coin into multiple outputs whose values are non-negative and
sum to the same value as the input. The output coins may also be associated with different
wallet addresses.

Zerocash then uses zk-SNARKs as a means to prove that the value of the inputs into a POUR
is the same as the value of the outputs. This prevents users from generating "debt", or from
generating value without going through a minting process (also defined in the Zerocash spec).

6

Ensuring consistency of weights

A similar issue appears in the proposed system: a cheating player could update the weights
on their graph to cause a region to be "in debt". Therefore, we need the protocol to ensure
players prove that the sum of all edges is equal to how many units the player has in play (a
well-known value).

Additive homomorphic cryptosystems

Some cryptosystems admit an additive homomorphic property: that is, given the public key
and two encrypted values σ1 = E (m1),σ2 = E (m2), the value σ1 + σ2 = E (m1 +m2) is the
cyphertext of the underlying operation.

Paillier (1999) defined a cryptosystem based on residuosity classes, which expresses this property.
Damgård, Jurik and Nielsen (2010) demonstrates an honest-verifier zero-knowledge proof for
proving a given value is 0. Hence, clearly, proving a summation a + b = v can be performed
by proving v − a − b = 0 in an additive homomorphic cryptosystem.

So, using some such scheme to obscure edge weights should enable verification of the edge
values without revealing their actual values.

Reducing communication

In the presented algorithms, interaction is performed fairly constantly, leading to a large number
of communications. This will slow the system considerably, and make proofs longer to perform
due to network latency.

An alternative general protocol is the Σ-protocol (Groth, 2004). In the Σ-protocol, three
communications occur:

• The prover sends the conjecture.

• The verifier sends a random string.

• The prover sends some proofs generated using the random string.

This reduces the number of communications to a constant, even for varying numbers of
challenges.

The Fiat-Shamir heuristic (Fiat and Shamir, 1987) provides a method to further reduce
communication by constructing non-interactive zero-knowledge proofs using a random oracle.
For ledgers, non-interactive zero-knowledge proofs are necessary, as the ledger must be resilient
to a user going offline. However, in our case, users should be expected to stay online for an
entire session of Risk, and each session is self-contained. So this full transformation is not
necessary.

Set membership proofs

Another approach to the problem is to use set membership, which is a widely considered
problem in zero-proof literature. In this case, each region would be associated with a set of
units from a public "pool" of units. Then, a player needs to prove the cardinality of a set, and
the uniqueness/distinctness of its members. A number of constructs exist for analysing and
proving in obscured sets.

7

Accumulators

Defined by Benaloh and de Mare (1994), accumulators form a subset of one-way hash
functions that satisfy a quasi-commutative property: that is, for some hash function h,
h(h(x1, y1), y2) = h(h(x1, y2), y1).

Benaloh and de Mare (1994) also proved that such functions exist, by providing an example
based on modular arithmetic. They then used these to construct set membership proofs as
follows:

• Take s1, ... , sn a set of users who wish to identify each other, and Pk a public key.

• Each user si computes z = h(h(h(Pk , s1), ...), sn) and zi = h(h(h(Pk , s1), ...), sn)
omitting si .

• For a user to validate their membership to another user, they publish (zi , si).

Merkle trees

Merkle trees (Merkle, 1988) provide an alternative way of proving set membership, that is
more space efficient than accumulators, and doesn’t require special hashing functions (any
one-way function will work). A Merkle tree stores the hashes of some data in the leaf nodes,
and each node above stores the hash of the two nodes below it. The commitment is then the
hash of the topmost node.

With this scheme, the data stored in the leaf nodes is totally obscured. However, the constructor
of the tree can demonstrate to another user the presence of some data in the tree by revealing
the hashes of a subset of the other nodes in the tree. They can also reveal the tree’s structure
without revealing any contents by revealing all hashes constituting the tree.

Whilst this would be useful in a Risk version in which a player never exposed their unit count,
and simply wagered units on an attack; it doesn’t apply well to the intended scenario of
privately communicating unit counts, as the hash function used is well-known, and so proofs
to a single player can easily be replicated by a malicious verifier to other players in the game.

To overcome this issue we want to devise some zero-knowledge system for proving set size. It
is then beneficial to consider a public set U containing all of a player’s possible units.

Blind signatures

Chaum (1983) describes a process of a blind signature, in which a message is signed without the
contents being revealed to the signer. This requires some signing function S which commutes
with an encrypting function E , i.e E−1(S−1(E (m))) = S−1(m).

Camenisch, Chaabouni and shelat (2008) demonstrates how blind signatures can be used to
construct zero-knowledge set membership proofs for some element σ in a public set Φ, using
pairing-based cryptography.

Blind signatures can also be performed with RSA (Bellare et al., 2003). In RSA-based blind
signatures, the signing party computes primes pA, qA and exponents d , e such that (md)e ≡ m
mod pAqA. The 2-tuple (pAqA, e) is the public key, and is released publicly. The other party
computes a random value R , and computes and publishes B = m · Re mod pAqA for some
message m. The signing party then replies with Bd = (m · Re)d ≡ md · R mod pAqA, so
that the other party can then extract md as R is known only to them. Due to the discrete

8

logarithm problem, determining the signing key d from this is not computationally feasible.
Similarly, it is not feasible for the signer to determine m, as R is not known to them.

RSA blinding can incur a security risk, as by using the same keys to sign and encrypt, a player
can be tricked into revealing their private key through a chosen-plaintext attack.

4 Implementation

The implementation provided uses WebSockets as the communication primitive. This is
therefore a centralised implementation. However, no verification occurs in the server code,
which instead simply "echoes" messages received to all connected clients.

Despite this approach being centralised, it does emulate a fully peer-to-peer environment, and
has notable benefits:

• It is faster to develop, use, and test than using a physical system such as mail;

• There is no need for hole-punching or port-forwarding;

• WebSockets are highly flexible in how data is structured and interpreted.

In particular, the final point allows for the use of purely JSON messages, which are readily
parsed and processed by the client-side JavaScript.

4.1 Message structure

Messages are given a fixed structure to make processing simpler. Each JSON message holds
an author field, being the sender’s ID; a message ID to prevent replay attacks and associate
related messages; and an action, which at a high level dictates how each client should process
the message.

The action more specifically is one of ANNOUNCE, DISCONNECT, KEEPALIVE, RANDOM, and
ACT. The first three of these are used for managing the network by ensuring peers are aware
of each other and know the state of the network. RANDOM is designated to be used by the
shared-random-value subprotocol defined later. ACT is used by players to submit actions for
their turn during gameplay.

Each message is also signed to verify the author. This is a standard application of RSA. A
hash of the message is taken, then encrypted with the private key. This can be verified with
the public key.

RSA keys are accepted by peers on a first-seen basis.

4.2 Paillier

Paillier requires the calculation of two large primes for the generation of public and private key
pairs. ECMAScript typically stores integers as floating point numbers, giving precision up to
253. This is clearly inappropriate for the generation of sufficiently large primes.

In 2020, ECMAScript introduced BigInt (TC39, 2020), which are, as described in the
spec, "arbitrary precision integers". Whilst this does not hold true in common ECMAScript
implementations (such as Chrome’s V8), these "big integers" still provide sufficient precision

9

for the Paillier cryptosystem, given some optimisations and specialisations are made with
regards to the Paillier algorithm and in particular the modular exponentiation operation.

It must be noted that BigInt is inappropriate for cryptography in practice, due to the possibility
of timing attacks as operations are not necessarily constant time (TC39, 2020). In particular,
modular exponentiation is non-constant time, and operates frequently on secret data. A savvy
attacker may be able to use this to leak information about an adversary’s private key.

4.3 Modular exponentiation

As BigInt’s V8 implementation does not optimise modular exponentiation, we employ the
use of addition chaining, as described in Schneier (1996). Addition chaining breaks a modu-
lar exponentiation into repeated square-and-modulo operations, which are computationally
inexpensive to perform.

The number of operations is dependent primarily on the size of the exponent. For an exponent
of bit length L, somewhere between L and 2L multiply-and-modulo operations are performed,
which gives overall a logarithmic time complexity supposing bit-shifts and multiply-and-modulo
are constant time operations.

4.4 Generating large primes

I chose to use primes of length 2048 bits. This is a typical prime size for public-key cryptography,
as this generates a modulus n = pq of length 4096 bits.

Generating these primes is a basic application of the Rabin-Miller primality test (Rabin,
1980). This produces probabilistic primes, however upon completing sufficiently many rounds
of verification, the likelihood of these numbers actually not being prime is dwarfed by the
likelihood of hardware failure.

4.5 Public key

In the Paillier cryptosystem, the public key is a pair (n, g) where n = pq for primes p, q
satisfying gcd(pq, (p − 1)(q − 1)) = 1 and g ∈ Z∗

n2 . We restrict the range of plaintexts m to
m < n.

The Paillier cryptosystem is otherwise generic over the choice of primes p, q. However, by
choosing p, q of equal length, the required property on pq, (p−1)(q−1) coprime is guaranteed.

Proposition 4.1. For p, q prime of equal length, gcd(pq, (p − 1)(q − 1)) = 1.

Proof. Without loss of generality, assume p > q. Suppose gcd(pq, (p − 1)(q − 1)) ̸= 1.
Then, q | p − 1. However, the bit-lengths of p, q are identical. So 1

2
(p − 1) < q. This is

a contradiction to q | p − 1 (as 2 is the smallest possible divisor), and so we must have
gcd(pq, (p − 1)(q − 1)) = 1 as required.

As the prime generation routine generates primes of equal length, this property is therefore
guaranteed. The next optimisation is to select g = 1 + n.

Proposition 4.2. 1 + n ∈ Z∗
n2 .

10

Proof. We see that (1 + n)n ≡ 1 mod n2 from binomial expansion. So 1 + n is invertible as
required.

The selection of such g is ideal, as the binomial expansion property helps to optimise exponen-
tiation. Clearly, from the same result, gm = 1 +mn. This operation is far easier to perform,
as it can be performed without having to take the modulus to keep the computed value within
range.

4.6 Encryption

The cyphertext is, in general, computed as c = gmrn mod n2 for r < n some random secret
value. To make this easier to compute, we compute the equivalent value c = (rn mod n2)·(gm

mod n2) mod n2.

4.7 Private key

The private key is the value of the Carmichael function λ = λ(n), defined as the exponent
of the group Z∗

n. From the Chinese remainder theorem, λ(n) = λ(pq) can be computed as
lcm(λ(p),λ(q)). From Carmichael’s theorem, this is equivalent to lcm(ϕ(p),ϕ(q)), where ϕ is
Euler’s totient function. Hence, from the definition of Euler’s totient function, and as p, q are
equal length, λ = (p − 1)(q − 1) = ϕ(n).

We are also interested in the ability to compute µ = λ−1 mod n as part of decryption.
Fortunately, this is easy, as from Euler’s theorem, λϕ(n) ≡ 1 mod n, and so we propose
µ = λϕ(n)−1 mod n. As ϕ(n) is well-known to us, we get µ = λ(p−1)(q−1) mod n, a relatively
straight-forward computation.

4.8 Decryption

Let c be the cyphertext. The corresponding plaintext is computed as m = L(cλ mod n2) · µ
mod n, where L(x) = x−1

n
. This is relatively simple to compute in JavaScript.

4.9 Proof system

The proof system is that of Damgård, Jurik and Nielsen (2003). The authors give a method to
prove knowledge of the encrypted value. The importance of using a zero-knowledge method
for this is that it verifies knowledge to a single party. This party should be an honest verifier:
this is an assumption we have made of the context, but in general this is not true, and so this
provides an attack surface for colluding parties.

The proof system presented is an interactive proof for a given cyphertext c being an encryption
of 0.

11

Prover Verifier

r ∈ Z∗
n with c = rn (cyphertext)

c

Choose random r ∗ ∈ Z∗
n

a = (r ∗)n

Choose random e

e

z = r ∗r e

Verify z , c , a coprime to n
Verify r z ≡ ace mod n2

Then, a proof for the following homologous problem can be trivially constructed: given some
cyphertext c = gmrn mod n2, prove that the text cg−m mod n2 is an encryption of 0.

4.10 Application to domain

Players should prove a number of properties of their game state to each other to ensure fair
play. These are as follows.

1. The number of reinforcements placed during the first stage of a turn.

2. The number of units on a region neighbouring another player.

3. The number of units lost during an attack/defence.

4. The number of units available for an attack/defence.

5. The number of units moved when fortifying.

(4) and (5) can be generalised further as range proofs.

For (1), we propose the following communication sequence. The player submits pairs (R , cR)
for each region they control, where R is the region and cR is a cyphertext encoding the number
of reinforcements to add to the region (which may be 0). Each player computes cR1 · ... · cRn .

Bibliography

Bellare, M., Namprempre, C., Pointcheval, D. and Semanko, M., 2003. The one-more-rsa-
inversion problems and the security of chaum’s blind signature scheme. Journal of cryptology,
16(3).

Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E. and Virza, M., 2014.
Zerocash: Decentralized anonymous payments from bitcoin [Online]. 2014 ieee symposium
on security and privacy. pp.459–474. Available from: https://doi.org/10.1109/SP.
2014.36.

Benaloh, J. and Mare, M. de, 1994. One-way accumulators: A decentralized alternative to
digital signatures. In: T. Helleseth, ed. Advances in cryptology — eurocrypt ’93. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp.274–285.

Blum, M., 1983. Coin flipping by telephone a protocol for solving impossible problems. Acm
sigact news, 15(1), pp.23–27.

Camenisch, J., Chaabouni, R. and shelat, a., 2008. Efficient protocols for set membership
and range proofs. In: J. Pieprzyk, ed. Advances in cryptology - asiacrypt 2008. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp.234–252.

Chaum, D., 1983. Blind signatures for untraceable payments. In: D. Chaum, R.L. Rivest and
A.T. Sherman, eds. Advances in cryptology. Boston, MA: Springer US, pp.199–203.

Cohen, B., 2017. Bittorrent.org. Available from: https://www.bittorrent.org/beps/
bep_0003.html.

Damgård, I., Jurik, M. and Nielsen, J.B., 2010. A generalization of paillier’s public-key system
with applications to electronic voting. International journal of information security, 9(6),
pp.371–385.

Damgård, I., Jurik, M. and Nielsen, J., 2003. A generalization of paillier’s public-key system
with applications to electronic voting. International journal of information security [Online],
9, pp.371–385. Available from: https://doi.org/10.1007/s10207-010-0119-9.

Eatsleeput.com, 2022. [Online]. Archive: https://archive.ph/Gp0Ou. Available from: https:
//eatsleeput.com/.

Fiat, A. and Shamir, A., 1987. How to prove yourself: Practical solutions to identification and
signature problems. In: A.M. Odlyzko, ed. Advances in cryptology — crypto’ 86. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp.186–194.

Goldreich, O., Micali, S. and Wigderson, A., 1991. Proofs that yield nothing but their validity

12

https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://www.bittorrent.org/beps/bep_0003.html
https://www.bittorrent.org/beps/bep_0003.html
https://doi.org/10.1007/s10207-010-0119-9
https://eatsleeput.com/
https://eatsleeput.com/

BIBLIOGRAPHY 13

or all languages in np have zero-knowledge proof systems. J. acm [Online], 38(3), p.690–728.
Available from: https://doi.org/10.1145/116825.116852.

Groth, J., 2004. Honest verifier zero-knowledge arguments applied. Ph.D. thesis. BRICS.

Merkle, R.C., 1988. A digital signature based on a conventional encryption function. In:
C. Pomerance, ed. Advances in cryptology — crypto ’87. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp.369–378.

Mohr, A., 2007. A survey of zero-knowledge proofs with applications to cryptography. Southern
illinois university, carbondale, pp.1–12.

Paillier, P., 1999. Public-key cryptosystems based on composite degree residuosity classes.
International conference on the theory and applications of cryptographic techniques. Springer,
pp.223–238.

Rabin, M.O., 1980. Probabilistic algorithm for testing primality. Journal of number theory
[Online], 12(1), pp.128–138. Available from: https://doi.org/https://doi.org/10.
1016/0022-314X(80)90084-0.

Schneier, B., 1996. Applied cryptography. John Wiley.

Shamir, A., Rivest, R.L. and Adleman, L.M., 1981. Mental poker [Online], Boston, MA: Springer
US, pp.37–43. Available from: https://doi.org/10.1007/978-1-4684-6686-7_5.

TC39, 2020. Bigint: Arbitrary precision integers in javascript. https://github.com/tc39/
proposal-bigint.

https://doi.org/10.1145/116825.116852
https://doi.org/https://doi.org/10.1016/0022-314X(80)90084-0
https://doi.org/https://doi.org/10.1016/0022-314X(80)90084-0
https://doi.org/10.1007/978-1-4684-6686-7_5
https://github.com/tc39/proposal-bigint
https://github.com/tc39/proposal-bigint

	Outline
	Existing solutions
	Centralised
	Peer-to-peer networks
	Untrusted setups

	Literature review
	Bit commitment schemes
	Zero-knowledge proofs

	Implementation
	Message structure
	Paillier
	Modular exponentiation
	Generating large primes
	Public key
	Encryption
	Private key
	Decryption
	Proof system
	Application to domain

	Bibliography

