
Cryptographic protocol for playing Risk in an
untrusted setting

Jude Southworth

Bachelor of Science in Computer Science and Mathematics
The University of Bath

2023

0.1 Acknowledgements
With thanks to Dr. Jim Laird and Dr. Guy McCusker.

0.2 Disambiguation

Symbol Meaning

|a| Bit length of value a(
a
b

)
Jacobi symbol for a, b or division (context dependent)

a
b

Division
Zk Additive group of integers modulo k
Z∗

k Multiplicative group of units modulo k
gcd(a, b) Greatest common divisor of a, b
lcm(a, b) Least common multiple of a, b
ϕ(k) Euler’s totient function
λ(k) Carmichael’s totient function
H(. . .) Ideal cryptographic hash function
∈R Selection at random

"Never create anything, it will be misinterpreted, it will chain you and follow you for the
rest of your life." - Hunter S. Thompson

Artefact available at https://gitea.jellypro.xyz/jude/Riskless

1

https://gitea.jellypro.xyz/jude/Riskless

Chapter 1

Outline

Risk is a strategy game developed by Albert Lamorisse in 1957. It is a highly competitive
game, in which players battle for control over regions of a world map by stationing units
within their territories in order to launch attacks on neighbouring territories that are not
in their control.

1.1 Existing solutions
For playing games over an internet connection, multiple solutions already exist. These can
roughly be broken down into those that are centralised and those that are decentralised,
although many decentralised systems rely on federated or centralised communications for
peer discovery.

1.1.1 Centralised

In highly centralised networks, traffic is routed to a number of servers that are operated by
the same organisation who maintains the game or service. This is the current standard for
the majority of the internet: in fact, this is the methodology used by the official version
of Risk, playable as an app.

Without patching the executables, there is no way for a user to run their own servers, or
to connect to a third party’s server. This has two main advantages:

• Moderation. The developers can enforce their own rules through some form of
EULA, and this would be properly enforceable, as if a user is banned from the
official servers, there is no alternative.

• Security. The server acts as a trusted party, and validates all communications from
players. Hence, players cannot subvert a (properly implemented) service’s protocol.

1.1.2 Peer-to-peer networks

In peer-to-peer (P2P) networks, traffic may be routed directly to other peers, or servers
may be operated by third parties (sometimes called "federated networks"). This form
of communication is still popular in certain games or services, for example BitTorrent

2

CHAPTER 1. OUTLINE 3

is primarily a P2P service; and titles from the Counter-Strike video game series may be
considered federated, with a wide selection of third party hosts.

The main advantage of P2P networks over centralised networks is longevity. Games such
as Unreal Tournament 99 (which is now federated) still have playable servers, as the
servers are community-run, and so as long as people still wish to play the game, they will
remain online (despite the original developers no longer officially supporting the title) [8].

However, security can often be worse in fully P2P networks than that of fully centralised
networks. Peers may send malicious communications, or behave in ways that violate the
general rules of the service. As there is no trusted server, there is no easy way to validate
communications to prevent peers from cheating.

Some P2P services try to address issues with security. In file-sharing protocols such as
BitTorrent, a tracker supplies hashes of the file pieces to validate the file being downloaded
[6]. However, the downside of this approach is that a trusted party (in this case the
tracker) is still required. A malicious tracker could supply bad hashes, or an outdated
tracker may expose peers to security vulnerabilities.

1.1.3 Untrusted setups

Currently, there exists an online centralised version of the board game Risk.

I aim to apply bit-commitment schemes, zero-knowledge proofs, and homomorphic encryp-
tion to an online P2P variant of Risk, to allow peers to play the game whilst preventing
cheating and needing no trusted parties. The variant of the game that is of interest is the
"fog of war" variant, where a player cannot see the unit counts of regions besides those
that they own or are neighbouring.

1.2 Literature review
Centralised systems can securely perform the generation of random values, through using
a cryptographically secure random number generator on the server-side, and distributing
the values to the clients. This is how dice rolls are processed in centralised online games.
However, in a P2P system, something else must be done to simulate the randomness.

For dice rolling, we want that

• No peer can change the probable outcome of the dice (random),

• No peer can deny having rolled the dice (non-repudiation).

We apply the concept of bit-commitment schemes to form these guarantees.

1.2.1 Bit-commitment schemes

Bit-commitment schemes provide a mechanism for one party to commit to some hid-
den value and reveal it later. This can be achieved through the use of commutative
cryptographic algorithms and with one-way functions.

CHAPTER 1. OUTLINE 4

Commutative cryptography

Protocols exist that utilise bit-commitment to play poker [27]. They offer a bit-commitment
scheme using commutative encryption algorithms based on modular arithmetic. This
scheme works by each player encrypting cards, and decrypting in a different order as to
obscure the value of the actual cards until all players have decrypted.

However, almost all well-documented encryption schemes are not commutative. One
alternative is to use some well-known one-way function, such as SHA, with randomly
generated salts.

Bit-commitment with one-way functions

Bit-commitment schemes can also be implemented using one-way functions:

1. The first party decides on the value m to be committed to.

2. The first party generates some random value r.

3. The first party generates and publishes some value c = H(m, r), where H is an
agreed-upon public one-way function.

4. The first party publishes m and r to the second party some time later.

5. The second party computes c′ = H(m, r) and validates that c = c′.

Protocols exist for flipping fair coins "across a telephone", which is isomorphic to selecting
a random value from a set of two values [2]. This cannot be simply repeated though to
generate numbers in the range of 1-6, as 6 is not a power of 2.

However, a similar protocol can be used where each player commits to a single value
x ∈ Z6. As the distribution of outcomes of addition in the group Zn is fair, we can then
sum the values of x committed to by both players to deduce a final value for the roll. This
is a standard application of bit-commitment, and nicely generalises Blum’s original paper.

1.2.2 Zero-knowledge proofs

Informally, zero-knowledge proofs can be considered to be protocols between two parties
(the prover and the verifier) that operate on some given statement. The protocol holds
the following three properties:

• Completeness. If the statement is true, an honest verifier will be convinced of its
truth by a prover.

• Soundness. If the statement is false, a cheating prover cannot convince an honest
verifier (except with some small probability).

• Zero-knowledge. If the statement is true, the verifier cannot learn any other
information besides its truthfulness.

Typically, this protocol will involve the verifier producing a set of challenges, which the
prover will respond to.

Formally, a zero-knowledge proof system for a language L is:

• For every x ∈ L, the verifier will accept x following interaction with a prover.

CHAPTER 1. OUTLINE 5

• For some polynomial p and any x /∈ S, the verifier will reject x with probability at
least 1

p(|x|) .

• A verifier can produce a simulator S such that for all x ∈ L, the outputs of S(x) are
indistinguishable from a transcript of the proving steps taken with the prover on x.

The final point describes a proof as being computationally zero-knowledge. Some stronger
conditions exist, which describe the distributions of the outputs of the simulator versus
the distributions of the outputs of interaction with the prover.

• Statistical. A simulator produced by a verifier gives transcripts distributed identi-
cally, except for some constant number of exceptions.

• Perfect. A simulator produced by a verifier produces outputs that are distributed
identically to real transcripts.

Zero-knowledge proofs are particularly applicable to the presented problem. They primarily
solve two problems:

• The disclosure of some information without leaking other information.

• The proof presented can only be trusted by the verifier, and not by other parties.

Honest-verifier zero-knowledge is a subset of general zero-knowledge, in which the verifier
is required to act in accordance with the protocol for the simulator distribution to behave
as expected. This imposes a significant issue: a malicious verifier may behave as to try
and attain additional information.

One solution to this is to transform a proof into a non-interactive zero-knowledge proof.
The Fiat-Shamir transformation [11] converts an interactive zero-knowledge proof into a
non-interactive zero-knowledge proof. In this process, the ability for a verifier to behave
maliciously is lost, as the verifier no longer produces challenges themselves. This relies
strongly upon the random-oracle model however [23]. As the random-oracle model is
not realistically attainable, it must be approximated, typically by a cryptographic hash
function. This introduces greater ability for the prover to cheat if they know a preimage
in the hash function used.

Games as graphs

The board used to play Risk can be viewed as an undirected graph. Each region is a node,
with edges connecting it to the adjacent regions. For convenience, we also consider the
player’s hand to be a node, which has all units not in play placed upon it.

Furthermore, the actions taken when playing the game can be seen as constructing new
edges on a directed weighted graph. This makes us interested in the ability to prove that
the new edges conform to certain rules.

The main game protocol can be considered as the following graph mutations for a player
P :

• Reinforcement. A player updates the weight on some edges of the graph that lead
from the hand node HP to region nodes R1, . . . , Rn in their control.

– Any adjacent players will then need to undergo proving the number of units on
neighbouring regions.

CHAPTER 1. OUTLINE 6

• Attack. Player P attacks RB from RA. In the event of losing units, the player
updates the edge on the graph from RA to the hand node HP .

In the event of winning the attack, the player updates the edge from RA to RB to
ensure some non-zero amount of units is located in the region.

• Unit movement. The player updates an edge from one region R1 to another
neighbouring region R2.

The goal is then to identify ways to secure this protocol by obscuring the edges and
weights, whilst preventing the ability for the player to cheat.

Graphs & zero-knowledge proofs

A typical example for zero-knowledge proofs is graph isomorphism [13].

Identifying Risk as a graph therefore enables us to construct isomorphisms as part of
the proof protocol. For example, when a player wishes to commit to a movement, it is
important to prove that the initial node and the new node are adjacent. This can be
proven by communicating isomorphic graphs, and constructing challenges based on the
edges of the original graph.

Cheating with negative values

Zerocash is a ledger system that uses zero-knowledge proofs to ensure consistency and
prevent cheating. Ledgers are the main existing use case of zero-knowledge proofs, and
there are some limited similarities between ledgers and Risk in how they wish to obscure
values of tokens within the system.

Publicly-verifiable preprocessing zero-knowledge succinct non-interactive arguments of
knowledge (zk-SNARKs) are the building blocks of Zerocash [1], and its successor Zcash.
A zk-SNARK consists of three algorithms: KeyGen, Prove, Verify.

These are utilised to construct and verify transactions called POURs. A POUR takes, as input,
a certain "coin", and splits this coin into multiple outputs whose values are non-negative
and sum to the same value as the input. The output coins may also be associated with
different wallet addresses.

Zerocash then uses zk-SNARKs as a means to prove that the value of the inputs into a
POUR is the same as the value of the outputs. This prevents users from generating "debt",
or from generating value without going through a minting process (also defined in the
Zerocash spec).

A similar issue appears in the proposed system: a cheating player could update the weights
on their graph to cause a region to be "in debt". This can be achieved by using range
proofs.

The BCDG range proof proves that a commitment to a plaintext in the interval [0, ℓ] lies
within the interval [−ℓ, 2ℓ], where ℓ is some well-known value [4, Section 2].

The distinction between the soundness and completeness intervals in the BCDG proof is
important, as through selection of specific private inputs, a prover can create a proof for a
plaintext m in the soundness interval and not the completeness interval. In this case, the

CHAPTER 1. OUTLINE 7

proof is also not in zero-knowledge, as the verifier may be able to infer a stronger upper
or lower bound on m. This is a major downside to this protocol.

The state of the art in range proofs is Bulletproofs [15]. Bulletproofs are utilised by the
Monero blockchain ledger, and use linear algebraic properties to allow multiple verifying
parties to process a single prover’s proof.

Bulletproofs have advantages in size and "batch verification", where a verifier can verify
multiple proofs simultaneously. However, the proofs are very complex, and a multi-round
approach that borrows some of the concepts used in Bulletproofs could be used instead.

In general, this approach uses a decomposition of the plaintext message m into its bits.
This allows a verifying party to reconstruct an encryption of m, and check the bit length,
without discovering m [3, Section 1.2.1].

Additive homomorphic cryptosystems

Some cryptosystems admit an additive homomorphic property: that is, given the public
key and two encrypted values σ1 = E(m1), σ2 = E(m2), the value σ1 + σ2 = E(m1 +m2)
is the ciphertext of the underlying operation.

The Paillier cryptosystem, which is based on composite residuosity classes express the
additive homomorphic property [22]. This is due to the structure of ciphertexts in the
Paillier cryptosystem. A public key is of structure (n, g), where n is the product of two
large primes and g is a generator of Z∗

n. Under the public key, the encryption c of a
message m is computed as

c = gmrn mod n2

for some random r ∈ Z∗
n2 .

The Paillier cryptosystem has disadvantages in its time and space complexity compared
to other public-key cryptosystems such as RSA. In space complexity, Paillier ciphertexts
are twice the size of their corresponding plaintext, as for a modulus n, ciphertexts are
computed modulo n2 for a message in range up to n. This cost can be reduced by
employing some form of compression on the resulting ciphertexts.

The main concern is the issue of time complexity of Paillier. Theoretic results based on the
number of multiplications performed indicate that Paillier can be 1,000 times slower than
RSA encryption. Many optimisations have been presented of the Paillier cryptosystem.

The first is in the selection of public parameter g. The original paper suggests a choice of
g = 2, however the choice of g = 1+n is very common, as the exponentiation gm = 1+mn
by binomial theorem.

Another optimisation is that of Jurik [18, Section 2.3.1]: Jurik proposes that the public-key
is instead (n, g, h), where h is the generator of the group Z∗

n[+] (the group of units with
Jacobi symbol +1). Then, an encryption c′ of a message m is computed as

c′ = gm(hr mod n)n mod n2

for some random r ∈ Z∗
n.

CHAPTER 1. OUTLINE 8

The optimisation comes in two parts: firstly, the mantissa is smaller, resulting in faster
multiplications. Secondly, by taking hn = hn mod n2, we find the following equivalence:

(hr mod n)n mod n2 = hrn mod n2

Exponentials of the fixed base hn can then be pre-computed to speed up exponentiation
by arbitrary r.

Jurik states that the optimised form can lead to a theoretic four times speedup over
Paillier’s original form.

Zero-knowledge proofs in Paillier cryptosystem

There exist honest-verifier zero-knowledge proofs for proving a given value is 0 [7, Sec-
tion 5.2]. Hence, clearly, proving a summation a + b = v can be performed by proving
v − a− b = 0 in an additive homomorphic cryptosystem.

So, using some such scheme to obscure edge weights should enable verification of the edge
values without revealing their actual values.

Reducing communication

In the presented algorithms, interaction is performed fairly constantly, leading to a large
number of communications. This will slow the system considerably, and make proofs
longer to perform due to network latency.

An alternative general protocol is the Σ-protocol [14]. In the Σ-protocol, three communi-
cations occur:

• The prover sends the conjecture.

• The verifier sends a random string.

• The prover sends some proofs generated using the random string.

This reduces the number of communications to a constant, even for varying numbers of
challenges.

The Fiat-Shamir heuristic [11], as discussed above, is another way to reduce communication
by using a random oracle. For ledgers, non-interactive zero-knowledge proofs are necessary,
as the ledger must be resilient to a user going offline. This is not the same in our
case, however non-interactive zero-knowledge proofs are still beneficial as the amount of
communications can be reduced significantly, which results in simpler network code.

The downside of using the Fiat-Shamir heuristic in our implementation is that any third
party can verify proofs. In some situations, we do not want this to be the case.

Chapter 2

Implementation

The implementation provided uses WebSockets as the communication primitive. This is
therefore a centralised implementation. However, no verification occurs in the server code,
which instead simply "echoes" messages received to all connected clients.

Despite this approach being centralised, it does emulate a fully P2P environment, and
has notable benefits:

• There is no need for NAT hole-punching or port-forwarding.

• WebSockets are highly flexible in how data is structured and interpreted.

In particular, the final point allows for the use of purely JSON messages, which are readily
parsed and processed by the client-side JavaScript.

The game is broken down into three main stages, each of which handles events in a
different way. These are shown below. Boxes in blue are messages received from other
players (or transmitted by ourselves). Boxes in green require us to transmit a message to
complete.

9

C
H

A
P

T
E

R
2.

IM
P

LE
M

E
N

TA
T

IO
N

10

Setup

Pre-game Game

Player connects

Add player Pi

Announce self

Start timer Ti

Player disconnects

Remove player Pi

Timer expires

Player keep-alives

Reset timer Ti

Player becomes ready

Update game stage

Decide first player

All players ready

Current player acts

Claim region Reinforce region

End turn

Not all regions claimed All regions claimed

U
pdate

gam
e

stage

All reinf. placed

Current player acts

Reinforce regions

Attack region

Send defence Target defends

Resolve dice roll

Target region owned by us

Fortify region

End turn

End game

All regions controlled by one player

Reinf. remaining

CHAPTER 2. IMPLEMENTATION 11

2.1 Message structure
Each JSON message holds an author field, being the sender’s ID; a message ID to associate
related messages; a timestamp to prevent replay attacks; and an action, which at a high
level dictates how each client should process the message.

The "action" is one of ANNOUNCE, DISCONNECT, KEEPALIVE, RANDOM, PROOF, and ACT. The
first three of these are used for managing the network by ensuring peers are aware of each
other and know the state of the network. ANNOUNCE is transmitted upon a player joining
to ensure the new player is aware of all other players. The ANNOUNCE message contains
the player’s encryption keys and the player’s ID.

RANDOM and PROOF are designated to be used by sub-protocols defined later on. ACT is
used by players to submit actions for their turn during gameplay.

Each message is also signed to verify the author. This is a standard application of RSA.
A SHA-3 hash of the message is taken, then encrypted with the private key. This can be
verified with the public key.

Players trust RSA keys on a trust-on-first-use (TOFU) basis. TOFU is the same protocol
as used by Gemini [29]. The main issue with TOFU is that if a malicious party intercepts
the first communication, they may substitute the RSA credentials transmitted by the
intended party, resulting in a man-in-the-middle attack.

2.2 Paillier cryptosystem
ECMAScript typically stores integers as floating point numbers, giving precision up to
253. This is clearly inappropriate for the generation of sufficiently large primes for the
Paillier cryptosystem.

In 2020, ECMAScript introduced BigInt, which are, as described in the spec, "arbitrary
precision integers" [30]. Whilst this does not hold true in common ECMAScript imple-
mentations (such as Chrome’s V8), these "big integers" still provide sufficient precision
for the Paillier cryptosystem.

It must be noted that BigInt is inappropriate for cryptography in practice, due to the
possibility of timing attacks as operations are not necessarily constant time [30]. In
particular, modular exponentiation is non-constant time, and operates frequently on secret
data. A savvy attacker may be able to use this to leak information about an adversary’s
private key; however, as decryption is not performed, this risk is considerably reduced as
there is less need to perform optimisations based on Chinese remainder theorem which
would require treating the modulus n as its two components p and q.

2.2.1 Modular exponentiation

As BigInt’s V8 implementation does not optimise modular exponentiation itself, we employ
the use of addition chaining [25]. Addition chaining breaks a modular exponentiation into
repeated square-and-modulo operations, which are less expensive to perform.

The number of operations is dependent primarily on the size of the exponent. For an
exponent of bit length L, somewhere between L and 2L multiply-and-modulo operations

CHAPTER 2. IMPLEMENTATION 12

are performed, which gives overall a logarithmic time complexity supposing bit-shifts and
multiply-and-modulo are constant time operations.

2.2.2 Public key

In the Paillier cryptosystem, the public key is a pair (n, g) where n = pq for primes p, q
satisfying gcd(pq, (p− 1)(q − 1)) = 1 and g ∈ Z∗

n2 . The range of plaintexts m is restricted
to 0 < m < n.

Generating primes is a basic application of the Rabin-Miller primality test [24]. This
produces probabilistic primes, however upon completing sufficiently many rounds of
verification, the likelihood of these numbers actually not being prime is dwarfed by the
likelihood of some other failure, such as hardware failure.

The Paillier cryptosystem is otherwise generic over the choice of primes p, q. However, by
choosing p, q of equal length, the required property of pq and (p− 1)(q− 1) being coprime
is guaranteed.

Proposition 2.2.1. For p, q prime of equal length, gcd(pq, (p− 1)(q − 1)) = 1.

Proof. Without loss of generality, assume p > q. Suppose gcd(pq, (p − 1)(q − 1)) ̸= 1.
Then, q | p− 1. However, the bit-lengths of p, q are identical. So 1

2
(p− 1) < q. This is

a contradiction to q | p− 1 (as 2 is the smallest possible divisor), and so we must have
gcd(pq, (p− 1)(q − 1)) = 1 as required.

As the prime generation routine generates primes of equal length, this property is therefore
guaranteed. The next step is to select the public parameter g as g = 1 + n.

Proposition 2.2.2. 1 + n ∈ Z∗
n2.

Proof. We see that (1 + n)n ≡ 1 mod n2 from binomial expansion. So 1 + n is invertible
as required.

Besides reducing the number of operations to perform exponentiation, exponentiation also
does not require auxiliary memory to store intermediary values used in the calculation.

In Jurik’s form, we also need to compute h, a generator of the Jacobi subgroup, and impose
restrictions on p, q. In particular, it is required that p ≡ q ≡ 3 mod 4, gcd(p−1, q−1) = 2,
and that p− 1, q− 1 consist of large factors except for 2. One method to guarantee this is
to use safe primes, which are primes of form 2p+ 1 for p prime.

Proposition 2.2.3. For p > 5 a safe prime, p ≡ 3 mod 4

Proof. Let q prime and p = 2q + 1 the corresponding safe prime. Then,

q ≡ 1 mod 4 =⇒ 2q + 1 ≡ 3 mod 4

q ≡ 3 mod 4 =⇒ 2q + 1 ≡ 3 mod 4

as required.

Proposition 2.2.4. For safe primes p ̸= q with p, q > 5, gcd(p− 1, q − 1) = 2

CHAPTER 2. IMPLEMENTATION 13

Proof. As p, q are safe, p−1
2

and q−1
2

are prime. So

gcd

(
p− 1

2
,
q − 1

2

)
= 1 =⇒ gcd(p− 1, q − 1) = 2

To identify safe primes, first we generate a prime p, and then test the primality of p−1
2

.
Finally, to get the public parameter h, we compute h = −x2 mod n for some random
x ∈ Z∗

n. With high likelihood x is coprime to n, and so the Jacobi symbol is computed as(
−x2

n

)
=

(
−x2

p

)(
−x2

q

)
= (−1)2 = 1

This gives us our public key (n, g, h).

2.2.3 Encryption

In the original Paillier scheme, ciphertexts are computed as E(m, r) = c = gmrn mod n2

for r < n some random secret value. In Jurik’s form, ciphertexts are computed as

E ′(m, r) = c′ = gm(hr mod n)n ≡ gm(hn mod n)r mod n2

Jurik remarks that E ′(m, r) = E(m,hr mod n).

To achieve a better speed-up, pre-computation of the fixed base hn mod n is used. By
pre-computing powers of the powers of two, exponentiation is reduced to at most |r|
multiplications. Let h[i] = h(2

i) mod n. Then, the following algorithm computes hb mod n.
function FixedBaseExp(b)

index← 0
counter ← 1
while b ̸= 0 do

if b ≡ 1 mod 2 then
ctr ← ctr × h[i]
ctr ← ctr mod n

end if
i← i+ 1
b← ⌊ b

2
⌋

end while
end function

2.2.4 Private key

The private key is the value of the Carmichael function λ = λ(n), defined as the exponent
of the group Z∗

n. From the Chinese remainder theorem, λ(n) = λ(pq) can be computed as
lcm(λ(p), λ(q)). From Carmichael’s theorem, this is equivalent to lcm(ϕ(p), ϕ(q)). Hence,
from the definition of ϕ, and as p, q are equal length, λ = (p− 1)(q − 1) = ϕ(n).

We also need to compute µ = λ−1 mod n as part of decryption. Fortunately, this is
easy, as from Euler’s theorem, λϕ(n) ≡ 1 mod n, and so we propose µ = λϕ(n)−1 mod n.
As ϕ(n) is easily computable with knowledge of p, q, we get µ = λ(p−1)(q−1) mod n, a
relatively straight-forward computation.

CHAPTER 2. IMPLEMENTATION 14

2.2.5 Decryption

Let c be the ciphertext. The corresponding plaintext is computed as

m = L(cλ mod n2) · µ mod n,

where L(x) = x−1
n

. This operation can be optimised by applying Chinese remainder
theorem. However, in the application presented, decryption is not used and is only useful
as a debugging measure. So this optimisation is not applied.

2.2.6 Implementation details

Paillier is implemented by four classes: PubKey, PrivKey, Ciphertext, and ReadOnlyCiphertext.
PubKey.encrypt converts a BigInt into either a Ciphertext or a ReadOnlyCiphertext
by the encryption function above. The distinction between these is that a ReadOnlyCiphertext
does not know the random r that was used to form it, and so is created by decrypting a
ciphertext that originated with another peer. A regular Ciphertext maintains knowledge
of r and the plaintext it enciphers. This makes it capable of proving by the scheme
presented below.

2.3 Shared random values
A large part of Risk involves random behaviour dictated by rolling some number of dice.
To achieve this, some fair protocol must be used to generate random values consistently
across each peer without any peer being able to manipulate the outcomes.

This is achieved through bit-commitment and properties of Zn. The protocol for two peers
is as follows, and generalises to n peers.

Protocol 2.3.1 (Shared random values).
Peer A Peer B

Generate random
noise NA, random key
kA

Generate random
noise NB, random key
kB

EkA(NA)

EkB(NB)

kA

kB

Compute NA +NB Compute NA +NB

To generalise this to n peers, we ensure that each peer waits to receive all encrypted noises
before transmitting their decryption key.

Depending on how NA+NB is then turned into a random value within a range, this system
may be manipulated by an attacker who has some knowledge of how participants are

CHAPTER 2. IMPLEMENTATION 15

generating their noise. As an example, suppose a random value within range is generated
by taking NA + NB mod 3, and participants are producing 2-bit noises. An attacker
could submit a 3-bit noise with the most-significant bit set, in which case the probability
of the final result being a 1 is significantly higher than the probability of a 0 or a 2. This is
a typical example of modular bias. To avoid this problem, peers should agree beforehand
on the number of bits to transmit. To combine noises, then use the XOR operation.

The encryption function used must also guarantee the integrity of decrypted ciphertexts
to prevent a malicious party creating a ciphertext which decrypts to multiple valid values
through using different keys.

Proposition 2.3.2. With the above considerations, the scheme shown is not manipulable
by a single cheater.

Proof. Suppose P1, . . . , Pn−1 are honest participants, and Pn is a cheater with a desired
outcome.

In step 1, each participant Pi commits Eki(Ni). The cheater Pn commits a constructed
noise Ekn(Nn).

The encryption function Ek holds the confidentiality property: that is, without k, Pi cannot
retrieve m given Ek(m). So Pn’s choice of Nn cannot be directed by other commitments.

The final value is dictated by the sum of all decrypted values. Pn is therefore left in a
position of choosing Nn to control the outcome of a+Nn, where a is selected uniformly
at random from the abelian group Z2ℓ for ℓ the agreed upon bit length.

As every element of this group is of order 2ℓ, the distribution of a +Nn is identical no
matter the choice of Nn. So Pn maintains no control over the outcome of a+Nn.

This extends inductively to support n− 1 cheating participants, even if colluding. Finally,
we must consider how to reduce random noise to useful values.

2.3.1 Resampling

A common approach is to take the modulus of the random noise. This causes modular
bias to appear however, where some values are less likely to be generated.

The typical way to avoid modular bias is by resampling. To avoid excessive communication,
resampling can be performed within the bit sequence by partitioning into blocks of n bits
and taking blocks until one falls within range. This is appropriate in the presented use
case as random values need only be up to 6, so the probability of consuming over 63 bits
of noise when resampling for a value in the range 0 to 5 is

(
1
4

)21 ≈ 2.3× 10−13.

2.3.2 Application to domain

Random values are used in two places.

• Selecting the first player.

• Rolling dice.

CHAPTER 2. IMPLEMENTATION 16

As this protocol must run many times during a game, we consider each operation of the
protocol as a "session", each of which has a unique name that is derived from the context.
This has another benefit as the unique name can then be used with the Web Locks API
to prevent race conditions that may occur due to this protocol running asynchronously.

2.4 Proof system
Players should prove a number of properties of their game state to each other to ensure
fair play. These are as follows.

1. The number of reinforcements placed during the first stage of a turn.

2. The number of units on a region neighbouring another player.

3. The number of units available for an attack/defence.

4. The number of units lost during an attack/defence (including total depletion of
units and loss of the region).

5. The number of units moved when fortifying.

These points are referenced in the following sections.

2.4.1 Proof of zero

The first proof to discuss is the honest-verifier protocol to prove knowledge that a ciphertext
is an encryption of zero [7, Section 5.2].

Protocol 2.4.1 (Proof of zero).
Prover Verifier

r ∈ Z∗
n with c = rn mod n2

c

Choose random r∗ ∈ Z∗
n

a = (r∗)n mod n2

Choose random e

e

z = r∗re mod n

Verify z, c, a coprime to n
Verify zn ≡ ace mod n2

A proof for the following homologous problem can be trivially constructed: given some
ciphertext c = gmrn mod n2, prove that the text cg−m mod n2 is an encryption of 0.

CHAPTER 2. IMPLEMENTATION 17

The text cg−m is constructed by the verifier. The prover then proceeds with the proof
as normal, since cg−m is an encryption of 0 under the same noise as the encryption of m
given.

This is used in point (2), as one player can then convince a neighbour in zero-knowledge
of the number of units within their region. It is also used throughout the other proofs
presented.

2.4.2 Proving reinforcement

Consider point (1). One option is to prove that the sum of the committed values is 1 by
using the additive homomorphic property. However, this allows a player to cheat by using
negative values. To overcome this, we want a new protocol that is still in zero-knowledge,
but proves additional properties of a reinforce action.

n1

n2 n3

n4 n1 + 0

n2 + 0 n3 + 1

n4 + 0

Figure 2.1: Example state change from reinforce action.

Valid

0

+1 0

0

Valid

0

0 0

+1

Invalid

+1

+1 0

0

Invalid

0

+2 −1

0

Figure 2.2: Valid and invalid reinforce messages. Notably, the final invalid message would
not be caught by the additive homomorphic check.

To prove this, the prover will demonstrate that a bijection exists between the elements in
the reinforcement set and a "good" set.

CHAPTER 2. IMPLEMENTATION 18

Protocol 2.4.2. The prover transmits the set

S = {(R1, E(n1, r1)), . . . , (RN , E(nN , rN))}

as their reinforcement step. Verifier wants that the second projection of this set maps to 1
exactly once.

Run t times in parallel:

1. Prover transmits {(ψ(Ri), E(ni, r
∗
i)) | 0 < i ≤ N} where ψ is a random bijection on

the regions.

2. Verifier picks c ∈R {0, 1}.

(a) If c = 0, the verifier requests the definition of ψ. They then compute the
product of the E(x, ri) · E(x, r∗i) and request proofs that each of these is zero.

(b) If c = 1, the verifier requests a proof that each E(ni, r
∗
i) is as claimed.

This protocol has the following properties, given that the proof of zero from before also
holds the same properties [7].

• Complete. The verifier will clearly always accept S given that S is valid.

• Sound. A cheating prover will trick a verifier with probability 2−t. So select a
sufficiently high t.

• Zero-knowledge. Supposing each ψ, ri, and r∗i are generated in a truly random
manner, the verifier gains no additional knowledge of the prover’s private state.

Additionally, this protocol is perfectly simulatable.

Proposition 2.4.3. Protocol 2.4.2 is perfectly simulatable in the random-oracle model.

Proof. To prove perfect simulation, we require a polynomial-time algorithm T ∗ such that
for all verifiers and for all valid sets S, the set of transcripts T (P, V, S) = T ∗(S), and the
distributions are identical.

Such a T ∗ can be defined for any S.

1. Choose a random ψ′ from the random oracle.

2. Choose random (r∗i)
′ from the random oracle.

3. Encrypt under P ’s public-key.

4. Verifier picks c as before.

5. Perform proofs of zero, which are also perfect simulation [7, Lemma 3].

This gives T ∗ such that T ∗(S) = T (P, V, S), and the output distributions are identical.
Hence, this proof is perfectly simulatable under random oracle model.

In practice, as we are using Jurik’s form of Paillier, this is computational zero-knowledge.
This is because Jurik’s form relies upon the computational indistinguishability of the
sequence generated by powers of h to random powers.

CHAPTER 2. IMPLEMENTATION 19

2.4.3 Range proof

The range proof we use proves an upper bound on |m| by constructing commitments to the
bits of m, and using homomorphic properties [3, Section 1.2.1]. Given valid encryptions
of a sequence of bits, we can reconstruct the number: let b1, . . . , b|m| be the bits of m (b1
being the LSB), and ci = E(bi) = gbirn mod n2. Then, we can construct an encryption
of m as

E(m) = (c1)
(20) · (c2)(2

1) · (c3)(2
2) · . . . · (c|m|)

(2|m|−1).

Validating E(m) is done with the proof of zero. Then it remains to prove that each ci
enciphers either a 0 or a 1. This can be done in a similar way to Protocol 2.4.2.

Protocol 2.4.4. The prover transmits c = E(m), and encryptions of the bits c1, . . . , c|m|,
except using −1 in place of 1.

1. The verifier computes

c ·
|m|∏
i

(ci)
(2i−1)

and requests a proof of zero.

2. Perform t times for each i:

(a) Prover transmits S = {E(0), E(1)}.

(b) Verifier picks a ∈R {0, 1}.

i. If a = 0, the verifier requests a proof that S = {0, 1}.

ii. If a = 1, the verifier requests a proof that ci · si is zero for one of the si ∈ S.

The downside of this proof over the BCDG proof [4] is that the time to perform and verify
this proof grows linearly with |m|. However, in most cases |m| should be "small": i.e,
|m| ≤ 5.

Range proof is used in points (3), (4), and (5). In (3), this is to convince other players
that the number of units is sufficient for the action. In (4), this is to show that the region
is not totally depleted. In (5), this is to ensure the number of units being fortified is less
than the strength of the region. All of these are performed using Protocol 2.4.4 and by
using the additive homomorphic property to subtract the lower range from m first.

2.4.4 Proving fortifications

Point (5) still remains, as the range proof alone only works to prevent negative values
from appearing in the resolution of a fortify action. Fortify actions need to be of form
{k,−k, 0, . . . , 0}) and the regions corresponding to k,−k amounts must be adjacent.

CHAPTER 2. IMPLEMENTATION 20

n1

n2 n3

n4 n1 + k

n2 + 0 n3 − k

n4 + 0

Figure 2.3: Example state change from fortify action.

Valid

0

+k −k

0

Valid

−k

0 +k

0

Invalid

0

+k 0

−k

Invalid

k1 ̸= k2

0

+k1 −k2

0

Figure 2.4: Valid and invalid fortify messages.

We combine some ideas from the graph isomorphism proofs with ideas from before to get
the following protocol.

Protocol 2.4.5. The prover transmits the set

S = {(R1, E(k, r1)), (R2, E(−k, r2)), (R3, E(0, r3)) . . . , (RN , E(0, rN))}

as their fortify message.

Run t times in parallel:

1. Prover transmits {(ψ(Ri), E(−ni, r
∗
i)) | 0 < i ≤ N} where ψ is a random bijection

on the regions, and {H(Ri, Rj, sij) | Ri neighbours Rj} where sij is a random salt.

2. Verifier chooses a random c ∈ {0, 1}.

(a) If c = 0, the verifier requests the definition of ψ and each salt. They check that
the resulting graph is isomorphic to the original graph. They then compute
E(ni, ri) · E(−ni, r

∗
i) for each i and request a proof that each is zero. Finally,

CHAPTER 2. IMPLEMENTATION 21

they compute each edge hash and check that there are precisely the correct
number of hashes.

(b) If c = 1, the verifier requests proofs that |S| − 2 elements are zero and that the
remaining pair add to zero. They then request the salt used to produce the
hash along the edge joining the two non-zero elements, and test that this hash
is correct.

2.4.5 Optimising

It is preferred that these proofs can be performed with only a few communications: this
issue is particularly prevalent for protocols requiring multiple rounds to complete. The
independence of each round on the next means the proof can be performed in parallel,
so the prover computes all of their private state, then the verifier computes all of their
challenges. However, still is the issue of performing proofs of zero.

We can apply the Fiat-Shamir heuristic to make proofs of zero non-interactive [11]. In
place of a random oracle, we use a cryptographic hash function. We take the hash of
some public parameters to prevent cheating by searching for some values that hash in a
preferable manner. In this case, selecting e = H(g,m, a) is a valid choice. To get a hash of
desired length, an extendable output function such as SHAKE256 can be used [21]. The
library jsSHA [5] provides an implementation of SHAKE256 that works within a browser.

CHAPTER 2. IMPLEMENTATION 22

2.4.6 Application to domain

Player 1 World Player 2

Protocol 2.4.2

Reinforce regions

Protocol 2.4.1 (neighbouring counts)

Attack Player 2

Protocol 2.4.4

Send defence
Protocol 2.4.4

Protocol 2.3.1 (resolve dice)

Protocol 2.4.4 (prove maintained ownership)

Fortify

Protocol 2.4.5

Protocol 2.4.1 (neighbouring counts)

Protocol 2.4.4 (prove non-negative)

Figure 2.5: An example turn during the game incorporates each of the protocols presented
above, some many times.

Chapter 3

Review

3.1 Theoretic considerations

3.1.1 Random oracles

Various parts of the implementation use the random oracle model: in particular, the
zero-knowledge proof sections. The random oracle model is theoretic, as according to the
Church-Turing hypothesis, a machine cannot produce infinite truly random output with
only finite input.

The random oracle model is used for two guarantees. The first is in the construction
of truly random values that will not reveal information about the prover’s state. In
practice, a cryptographically secure pseudo-random number generator will suffice for this
application, as CSPRNGs typically incorporate environmental data to ensure outputs are
unpredictable [19].

The second is to associate a non-random value with a random value. In practice, a
cryptographic hash function such as SHAKE is used. This gives appropriately pseudo-
random outputs that appear truly random, and additionally are assumed to be preimage
resistant: a necessary property when constructing non-interactive proofs in order to
prevent a prover manipulating the signature used to derive the proof.

3.1.2 Quantum resistance

Paillier is broken if factoring large numbers is computationally feasible [22, Theorem 9].
Therefore, it is vulnerable to the same quantum threat as RSA is, known as Shor’s
algorithm [28]. Alternative homomorphic encryption schemes are available, which are
believed to be quantum-resistant, as they are based on lattice methods (e.g, [12]).

3.1.3 Honest-verifier

The proof of zero is honest-verifier [7, Section 5.2]. However, applying the Fiat-Shamir
heuristic converts such a proof into a general zero-knowledge proof [11, Section 5]. This
means that, supposing the choice of transform used is appropriate, Protocol 2.4.2 should
also be general zero-knowledge. However, the interactive proofs performed as part of

23

CHAPTER 3. REVIEW 24

the game are still only honest-verifier, and a malicious verifier may be able to extract
additional information from the prover (such as the blinding value used).

3.2 Efficiency

3.2.1 Storage complexity

Let n be the Paillier modulus.

Paillier ciphertexts are constant size, each 2|n| in size (as they are taken modulo n2). This
is small enough for the memory and network limitations of today.

The interactive proof of zero uses two Paillier ciphertexts (each size 2|n|), a challenge of
size |n|, and a proof statement of size |n|. In total, this is a constant size of 6|n|.

On the other hand, the non-interactive variant needs not communicate the challenge (as
it is computed as a function of other variables). So the non-interactive proof size is 5|n|.

The non-interactive Protocol 2.4.2 requires multiple rounds. Assume that we use 48 rounds:
this provides a good level of soundness, with a cheat probability of

(
1
2

)−48 ≈ 3.6× 10−15.
Additionally, assume that there are five regions to verify. Each prover round then requires
five Paillier ciphertexts, and each verifier round five non-interactive proofs of zero plus
some negligible amount of additional storage for the bijection. This results in a proof size
of (10|n|+ 10|n|)× 48 = 960|n|. For key size |n| = 2048, this is 240kB. This is a fairly
reasonable size for memory and network, but this value may exceed what can be placed
within a processor’s cache, leading to potential slowdown during verification.

This could be overcome by reducing the number of rounds, which comes at the cost of
increasing the probability of cheating. In a protocol designed to only facilitate a single
game session, this may be acceptable to the parties involved. For example, reducing the
number of rounds to 24 will increase the chance of cheating to

(
1
2

)−24 ≈ 6.0× 10−8, but
the size would reduce by approximately half.

This is all in an ideal situation without compression or signatures: in the implementation
presented, the serialisation of a ciphertext is larger than this, since it serialises to a string
of the hexadecimal representation and includes a digital signature for authenticity. In
JavaScript, encoding a byte string as hexadecimal should yield approximately a four
times increase in size, as one byte uses two hexadecimal characters, which are encoded as
UTF-16. Results for this are shown in Table 3.3. Some potential solutions are discussed
here.

Compression. One solution is to use string compression. String compression can reduce
the size considerably, as despite the ciphertexts being random, the hex digits only account
for a small amount of the UTF-8 character space. LZ-String, a popular JavaScript string
compression library, can reduce the size of a single hex-encoded ciphertext to about 35%
of its original size. This will result in some slowdown due to compression time however,
but this is somewhat negligible in the face of the time taken to produce and verify proofs
in the first place.

Message format. Another solution is to use a more compact message format, for example
msgpack [20] (which also has native support for binary literals).

CHAPTER 3. REVIEW 25

Smaller key size. The size of ciphertexts depends directly on the size of the key. Using
a smaller key will reduce the size of the ciphertexts linearly.

3.2.2 Time complexity

Theoretic timing results versus RSA are backed experimentally by my implementation.
The following benchmarking code was executed.

console.log("Warming up")

for (let i = 0n; i < 100n; i++) {
keyPair.pubKey.encrypt(i);

}

console.log("Benching")

performance.mark("start")
for (let i = 0n; i < 250n; i++) {

keyPair.pubKey.encrypt(i);
}
performance.mark("end")

console.log(performance.measure("duration", "start", "end").duration)

Performing 250 Paillier encrypts required 47,000ms. On the other hand, performing 250
RSA encrypts required just 40ms. Results are shown in Table 3.1.

The speed of decryption is considerably less important in this circumstance, as Paillier
ciphertexts are not decrypted during the execution of the program.

Some potential further optimisations to the implementation are as follows.

Caching. As the main values being encrypted are 0 or 1, a peer could maintain a cache
of encryptions of these values and transmit these instantly. Caching may be executed in a
background "web worker". A consideration is whether a peer may be able to execute a
timing-related attack by first exhausting a peer’s cache of a known plaintext value, and
then requesting an unknown value and using the time taken to determine if the value was
sent from the exhausted cache or not.

Smaller key size. The complexity of Paillier encryption increases with key size. Using a
smaller key could considerably reduce the time taken [22].

I tested this on top of the alternative Paillier scheme from above. This resulted in linear
reductions in encryption time: encryption under a 1024-bit modulus took a sixth of the
amount of time as under a 2048-bit modulus, and encryption under a 2048-bit modulus
took a sixth of the amount of time as under a 4096-bit modulus.

Vectorised plaintexts. The maximum size of a plaintext is |n|: in our case, this is
4096 bits. By considering this as a vector of 128 32-bit values, peers could use a single
ciphertext to represent their entire state. This process is discussed as a way to allow
embedded devices to use Paillier encryption [26].

CHAPTER 3. REVIEW 26

Protocol 2.4.2 can be modified by instead testing that the given ciphertext is contained
in a set of valid ciphertexts. There would still be a large number of Paillier encryptions
required during this proof.

The other proofs do not translate so trivially to this structure however. In fact, in some
contexts the proofs required may be considerably more complicated, becoming round-based
proofs which may be slower and use more Paillier encryptions to achieve the same effect.

Optimising language. An optimising language may be able to reduce the time taken to
encrypt. On the browser, this could involve using WASM as a way to execute compiled
code within the browser, although WASM does not always outperform JavaScript [17].

Another approach is to use a web extension to communicate with a system daemon
providing the relevant functionality. This is language-agnostic (except that the extension
itself must be JavaScript), and the daemon could take advantage of other system features
such as multiple cores. The multi-round proofs in particular are embarrassingly parallel,
as each round is independent of the other rounds.

3.2.3 Complexity results

All measurements were taken on Brave 1.50.114 (Chromium 112.0.5615.49) 64-bit, using
a Ryzen 5 3600 CPU: a consumer CPU from 2019. Absolute timings are extremely
dependent on the browser engine: for example Firefox 111.0.1 was typically 4 times slower
than the results shown.

C
H

A
P

T
E

R
3.

R
E

V
IE

W
27

Table 3.1: Time to encrypt
Modulus Paillier encrypt Jurik encrypt Jurik encrypt with

pre-computation
RSA encrypt

|n| = 1024 6ms 4ms 1.4ms 0.015ms
|n| = 2048 34ms 22ms 7.6ms 0.040ms
|n| = 4096 189ms 128ms – 0.093ms

Table 3.2: Timea to process non-interactive proofs

Modulus Protocol 2.4.1 Protocol 2.4.2 with t = 24 BCDG Range with t = 24 Protocol 2.4.4 with t = 24

Prover Verifier Prover Verifier Prover Verifier Prover Verifier

|n| = 1024 10ms 18ms 1,420ms 2,140ms 443ms 655ms 3,530ms 5,310ms
|n| = 2048 44ms 68ms 6,390ms 8,140ms 1,980ms 2,400ms 15,800ms 19,000ms
|n| = 4096 225ms 292ms 41,500ms 34,400ms 14,300ms 11,400ms 112,000ms 79,300ms

a |n| = 4096 uses a less-optimised encryption method, as the browser frequently timed out attempting to pre-compute for the more-optimised version.

Table 3.3: Byte sizeb of encoded non-interactive proofs

Modulus Protocol 2.4.1 Protocol 2.4.2 with t = 24 BCDG Range with t = 24 Protocol 2.4.4 with t = 24

JSON with LZ-String JSON with LZ-String JSON with LZ-String JSON with LZ-String

|n| = 1024 1,617B 576B 338,902B 95,738B 123,354B 34,857B 895,474B 248,420B
|n| = 2048 3,153B 1,050B 662,233B 187,333B 252,230B 70,868B 1,746,017B 485,787B
|n| = 4096 6,226B 1,999B 1,315,027B 368,646B 484,117B 135,990B 3,458,376B 964,913B

b 1 UTF-16 character, as used by ECMAScript [9, Section 6.1.4], is 2 or more bytes.

Chapter 4

Conclusions

4.1 Contributions
This project has contributed an implementation of an optimised form of Paillier that
is compatible with modern web browsers. Benchmarks show that, considering current
hardware, Paillier in Jurik’s form can be a viable cryptosystem for occasional use. However,
additional work is needed to make it efficient enough for large amounts of encryptions, as
seen in Protocol 2.4.4.

The Paillier implementation provides capability for Schnorr-style proofs of knowledge
and also multi-round proofs of knowledge, which serialise to JSON. These are made
non-interactive by applying the SHAKE cryptographic hash suite.

Multi-round proofs combining set membership and graph isomorphism are among the
implementations, and have strong zero-knowledge properties once used with the Fiat-
Shamir transform.

4.2 Domain
The protocols devised are effective in the target domain of online games. With multi-round
proofs of 24 rounds, players can be confident to a reasonably high probability that other
players are not trying to cheat.

For the most part, the protocols shown run in a time-frame that would not disrupt the
experience, with the exception of the bit length proof. With additional work, this proof
could be replaced with a Bulletproof [15], which may use less bandwidth and perform
faster.

A large outstanding problem with the implementation is conflict resolution. Currently, if a
player submits proofs that do not verify, other players simply ignore the message. However,
a better solution should be that the other players can decide to remove a misbehaving
player from the protocol.

28

CHAPTER 4. CONCLUSIONS 29

4.3 Wider application
P2P software solutions have many benefits to end users: mainly being greater user freedom.
I believe that the content presented here shows clear ways to extend P2P infrastructure,
and reduce dependence on centralised services.

I propose some ideas which could build off the content here.

4.3.1 Larger scale games

Many other games exist that the ideas presented could be applied to. Games of larger scale
with a similar structure, such as Unciv, could benefit from P2P networking implemented in
a similar manner. In particular, similar protocols to Protocol 2.4.4 would form an intrinsic
part of such games, as they have a similar graph structure which requires guarantees of
adjacency for many actions.

The downsides of this are that the complexity of P2P networking is far greater than in a
centralised model. This would be a considerable burden on the developers, and could hurt
the performance of such a game. Additionally, some modern routers no longer support
NAT hole-punching or UPnP due to security concerns [10], which makes accessing P2P
services more difficult for end users.

4.3.2 Decentralised social media

The schemes presented here could be applies to the concept of a decentralised social media
platform. Such a platform may use zero-knowledge proofs as a way to allow for "private"
profiles: the content of a profile may stay encrypted, but zero-knowledge proofs could be
used as a way to allow certain users to view private content in a manner that allows for
repudiation, and disallows one user from sharing private content to unauthorised users.

To store data, IPFS could be used. IPFS is a P2P data storage protocol [16]. This poses
an advantage that users can store their own data, but other users can mirror data to
protect against outages or users going offline. The amount of effective storage would also
grow as more users join the network.

Decentralised platforms promote user privacy, as users can control their own data. Ad-
ditionally, decentralised platforms promote standardisation of common operations such
as instant messaging. This can include end-to-end encryption, and so confidentiality is
then a choice of the user rather than the platform, and the consequences of backdoors or
legislation targetting platforms is reduced.

Some P2P messaging standards already coexist that could be used here, for example
Matrix and XMPP.

4.3.3 Handling of confidential data

The ability to prove the contents of a dataset to a second party without guaranteeing
authenticity to a third party is another potential application of the protocol presented.
Handling of confidential data is a critical concern for pharmaceutical companies, where a
data leak imposes serious legal and competitive consequences for the company. To allow a
second party to process data, some guarantee of the correctness of the data is required.

CHAPTER 4. CONCLUSIONS 30

Proofs are one way of achieving this, although other techniques such as keyed hashing
may be more effective.

Another consideration in this domain is the use of homomorphic encryption schemes to
allow a third party to process data without actually viewing the data. This protects the
data from viewing by the third party, and the processing methods from viewing by the
first party. For example, common statistical functions such as regression can be performed
on data that is encrypted under fully homomorphic encryption schemes.

4.4 Limitations

4.4.1 JavaScript

JavaScript was the incorrect choice of language for this project. Whilst the event-based
methodology was useful, I believe overall that JavaScript made development much more
difficult.

JavaScript is a slow language. Prime generation takes a considerable amount of time, and
this extends to encryption and decryption being slower than in an implementation in an
optimising compiled language. This was seen in the results shown before.

JavaScript’s type system makes debugging difficult. It is somewhat obvious that this
problem is far worse in systems with more interacting parts. TypeScript may have been a
suitable alternative, but most likely the easiest solution was to avoid both and go with a
language that was designed with stronger typing in mind from the outset.

JavaScript is a re-entrant language: this means that the interpreter does not expose
threads or parallelism to the developer, but it may still use threads under-the-hood and
switch contexts to handle new events. This introduces the possibility of race conditions
despite no explicit threading being used. The re-entrant nature is however beneficial to a
degree, as it means that long-running code won’t cause the WebSocket to close or block
other communications from being processed.

Using a language that can interact with the operating system would have further advan-
tages, as key generation can be performed by standard tools such as OpenSSL and stored
in the system keychain, and features like SIMD could be utilised for parallelism.

4.4.2 Resources

The P2P implementation requires more processing power and more bandwidth on each
peer than a client-server implementation would. This is the main limitation of the P2P
implementation. The program ran in a reasonable time, using a reasonable amount of
resources on the computers I had access to, but these are not representative of the majority
of computers in use today. Using greater processing power increases power consumption,
which is undesirable. In a client-server implementation, the power consumption should
be lower than the P2P implementation presented as no processing time is spent vali-
dating proofs or using the Paillier cryptosystem, which is less efficient than the hybrid
cryptosystems used in standard online communication.

Bibliography

[1] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from
bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474, 2014.

[2] Manuel Blum. Coin flipping by telephone a protocol for solving impossible problems.
ACM SIGACT News, 15(1):23–27, 1983.

[3] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In
International Conference on the Theory and Application of Cryptographic Techniques,
2000.

[4] Ernest F. Brickell, David Chaum, Ivan Damgård, and Jeroen van de Graaf. Gradual
and verifiable release of a secret. In A Conference on the Theory and Applications of
Cryptographic Techniques on Advances in Cryptology, CRYPTO ’87, page 156–166,
Berlin, Heidelberg, 1987. Springer-Verlag.

[5] Caligatio. jsSHA: A JavaScript/TypeScript implementation of the complete Secure
Hash Standard (SHA) family. https://github.com/Caligatio/jsSHA, 2022.

[6] Bram Cohen. Bittorrent.org, Feb 2017.

[7] Ivan Damgård, Mads Jurik, and Jesper Nielsen. A generalization of paillier’s public-
key system with applications to electronic voting. International Journal of Information
Security, 9:371–385, 04 2003.

[8] EatSleepUT.com. EatSleepUT, Feb 2022. Archive: https://archive.ph/Gp0Ou.

[9] ECMA. ECMAScript 2024 language specification. ECMA (European Association for
Standardizing Information and Communication Systems), pub-ECMA: adr,.

[10] Shadi Esnaashari, Ian Welch, and Peter Komisarczuk. Determining home users’
vulnerability to universal plug and play (upnp) attacks. In 2013 27th International
Conference on Advanced Information Networking and Applications Workshops, pages
725–729, 2013.

[11] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology —
CRYPTO’ 86, pages 186–194, Berlin, Heidelberg, 1987. Springer Berlin Heidelberg.

[12] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, pages
75–92, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

31

https://github.com/Caligatio/jsSHA

BIBLIOGRAPHY 32

[13] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity or all languages in np have zero-knowledge proof systems. J. ACM,
38(3):690–728, jul 1991.

[14] Jens Groth. Honest verifier zero-knowledge arguments applied. PhD thesis, BRICS,
2004.

[15] Jahid Hasan and Minghai Xu. Bulletproofs: A Non-Interactive Zero Knowledge Proof
Protocol For Blockchain Security. PhD thesis, 06 2020.

[16] IPFS. Ipfs specifications. https://github.com/ipfs/specs, 2023.

[17] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha. Not so fast:
Analyzing the performance of WebAssembly vs. native code. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 107–120, Renton, WA, July 2019.
USENIX Association.

[18] Mads Jurik. Extensions to the paillier cryptosystem with applications to cryptological
protocols. In BRICS Dissertation Series, 2003.

[19] Linux man-pages project. random, urandom - kernel random number source devices,
September 2017.

[20] msgpack. MessagePack: Spec. https://github.com/msgpack/msgpack, 2021.

[21] National Institute of Standards and Technology. Sha-3 standard: Permutation-
based hash and extendable-output functions. Technical report, U.S. Department of
Commerce, Washington, D.C., 2015.

[22] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In International conference on the theory and applications of cryptographic
techniques, pages 223–238. Springer, 1999.

[23] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli
Maurer, editor, Advances in Cryptology — EUROCRYPT ’96, pages 387–398, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg.

[24] Michael O Rabin. Probabilistic algorithm for testing primality. Journal of Number
Theory, 12(1):128–138, 1980.

[25] Bruce Schneier. Applied cryptography. John Wiley, 1996.

[26] Hossein Shafagh, Anwar Hithnawi, Andreas Droescher, Simon Duquennoy, and Wen
Hu. Talos: Encrypted query processing for the internet of things. In Proceedings of
the 13th ACM Conference on Embedded Networked Sensor Systems, SenSys ’15, page
197–210, New York, NY, USA, 2015. Association for Computing Machinery.

[27] Adi Shamir, Ronald L. Rivest, and Leonard M. Adleman. Mental Poker, pages 37–43.
Springer US, Boston, MA, 1981.

[28] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509,
oct 1997.

[29] Solderpunk. Project Gemini: Speculative specification, 2022.

https://github.com/ipfs/specs
https://github.com/msgpack/msgpack

BIBLIOGRAPHY 33

[30] TC39. Bigint: Arbitrary precision integers in javascript. https://github.com/
tc39/proposal-bigint, 2020.

https://github.com/tc39/proposal-bigint
https://github.com/tc39/proposal-bigint

	Acknowledgements
	Disambiguation
	Outline
	Existing solutions
	Centralised
	Peer-to-peer networks
	Untrusted setups

	Literature review
	Bit-commitment schemes
	Zero-knowledge proofs

	Implementation
	Message structure
	Paillier cryptosystem
	Modular exponentiation
	Public key
	Encryption
	Private key
	Decryption
	Implementation details

	Shared random values
	Resampling
	Application to domain

	Proof system
	Proof of zero
	Proving reinforcement
	Range proof
	Proving fortifications
	Optimising
	Application to domain

	Review
	Theoretic considerations
	Random oracles
	Quantum resistance
	Honest-verifier

	Efficiency
	Storage complexity
	Time complexity
	Complexity results

	Conclusions
	Contributions
	Domain
	Wider application
	Larger scale games
	Decentralised social media
	Handling of confidential data

	Limitations
	JavaScript
	Resources

	Bibliography

