2023-05-29 16:13:54 +00:00
|
|
|
from consts import *
|
|
|
|
from components import *
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from manim import *
|
|
|
|
|
|
|
|
|
|
|
|
class Introduction(TitledScene):
|
|
|
|
def construct(self):
|
|
|
|
self.add_title("Goldreich--Goldwasser--Halevi")
|
|
|
|
self.wait()
|
|
|
|
|
|
|
|
text_1 = Tex(
|
|
|
|
r"""
|
|
|
|
\begin{itemize}
|
|
|
|
\item Lattice-based cryptosystem.
|
|
|
|
\item Devised in 1997 by Goldreich, Goldwasser, and Halevi.
|
|
|
|
\item Broken in 1999 by Nguyen.
|
|
|
|
\end{itemize}
|
|
|
|
""",
|
|
|
|
font_size=MEDIUM_FONT,
|
|
|
|
)
|
|
|
|
self.add(text_1)
|
|
|
|
self.play(Write(text_1, run_time=4.0))
|
|
|
|
self.wait()
|
|
|
|
|
|
|
|
|
|
|
|
class Premise(TitledScene):
|
|
|
|
def construct(self):
|
|
|
|
self.add_title("Lattices")
|
|
|
|
|
|
|
|
# A lattice is a subspace of a vector space that is constructed by taking integer multiples of some basis
|
|
|
|
# vectors.
|
|
|
|
# For example, take the real plane R2.
|
|
|
|
plane = NumberPlane(axis_config={"stroke_width": 0.0})
|
|
|
|
plane.set_z_index(-10)
|
|
|
|
plane.set_opacity(0.75)
|
|
|
|
dot = Dot(ORIGIN)
|
|
|
|
self.add(dot, plane)
|
|
|
|
self.play(Create(dot), Create(plane))
|
|
|
|
self.wait()
|
|
|
|
|
|
|
|
# We can construct the 2D grid of integers with the elementary basis
|
|
|
|
lattice_1 = VGroup()
|
|
|
|
arrow_1 = Arrow(ORIGIN, [1, 0, 0], buff=0)
|
|
|
|
arrow_2 = Arrow(ORIGIN, [0, 1, 0], buff=0)
|
|
|
|
|
|
|
|
self.play(Create(arrow_1), Create(arrow_2))
|
|
|
|
self.wait()
|
|
|
|
|
|
|
|
for i in range(-7, 8):
|
|
|
|
for j in range(-6, 7):
|
|
|
|
lattice_1.add(Dot([i, j, 0]))
|
|
|
|
|
|
|
|
self.play(Create(lattice_1))
|
|
|
|
|
|
|
|
# By moving these basis vectors but maintaining their linear independency, other lattices can be formed
|
|
|
|
self.play(
|
|
|
|
Transform(arrow_1, Arrow(ORIGIN, [1.5, 0, 0], buff=0)),
|
|
|
|
*[
|
|
|
|
Transform(
|
|
|
|
dot,
|
|
|
|
Dot(
|
|
|
|
dot.get_center()
|
|
|
|
* np.matrix([[1.5, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
|
|
),
|
|
|
|
)
|
|
|
|
for dot in lattice_1
|
|
|
|
]
|
|
|
|
)
|
|
|
|
self.wait()
|
|
|
|
|
|
|
|
self.play(
|
|
|
|
Transform(arrow_1, Arrow(ORIGIN, [1, -0.5, 0], buff=0)),
|
|
|
|
*[
|
|
|
|
Transform(
|
|
|
|
dot,
|
|
|
|
Dot(
|
|
|
|
dot.get_center()
|
|
|
|
* np.matrix([[2 / 3, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
|
|
* np.matrix([[1, -0.5, 0], [0, 1, 0], [0, 0, 1]])
|
|
|
|
),
|
|
|
|
)
|
|
|
|
for dot in lattice_1
|
|
|
|
]
|
|
|
|
)
|
|
|
|
self.wait()
|
|
|
|
|
|
|
|
self.play(
|
|
|
|
Transform(arrow_1, Arrow(ORIGIN, [1, -1, 0], buff=0)),
|
|
|
|
Transform(arrow_2, Arrow(ORIGIN, [1, 1, 0], buff=0)),
|
|
|
|
*[
|
|
|
|
Transform(
|
|
|
|
dot,
|
|
|
|
Dot(
|
|
|
|
dot.get_center()
|
|
|
|
* np.matrix([[1, 0.5, 0], [0, 1, 0], [0, 0, 1]])
|
|
|
|
* np.matrix([[1, -1, 0], [1, 1, 0], [0, 0, 1]])
|
|
|
|
),
|
|
|
|
)
|
|
|
|
for dot in lattice_1
|
|
|
|
]
|
|
|
|
)
|
|
|
|
self.wait()
|