reminder-bot/command_attributes/src/attributes.rs

352 lines
11 KiB
Rust
Raw Normal View History

use std::fmt::{self, Write};
use proc_macro2::Span;
use syn::{
parse::{Error, Result},
spanned::Spanned,
Attribute, Ident, Lit, LitStr, Meta, NestedMeta, Path,
};
use crate::{
structures::{ApplicationCommandOptionType, Arg},
util::{AsOption, LitExt},
};
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum ValueKind {
// #[<name>]
Name,
// #[<name> = <value>]
Equals,
// #[<name>([<value>, <value>, <value>, ...])]
List,
// #[<name>([<prop> = <value>, <prop> = <value>, ...])]
EqualsList,
// #[<name>(<value>)]
SingleList,
}
impl fmt::Display for ValueKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
ValueKind::Name => f.pad("`#[<name>]`"),
ValueKind::Equals => f.pad("`#[<name> = <value>]`"),
ValueKind::List => f.pad("`#[<name>([<value>, <value>, <value>, ...])]`"),
ValueKind::EqualsList => {
f.pad("`#[<name>([<prop> = <value>, <prop> = <value>, ...])]`")
}
ValueKind::SingleList => f.pad("`#[<name>(<value>)]`"),
}
}
}
fn to_ident(p: Path) -> Result<Ident> {
if p.segments.is_empty() {
return Err(Error::new(p.span(), "cannot convert an empty path to an identifier"));
}
if p.segments.len() > 1 {
return Err(Error::new(p.span(), "the path must not have more than one segment"));
}
if !p.segments[0].arguments.is_empty() {
return Err(Error::new(p.span(), "the singular path segment must not have any arguments"));
}
Ok(p.segments[0].ident.clone())
}
#[derive(Debug)]
pub struct Values {
pub name: Ident,
pub literals: Vec<(Option<String>, Lit)>,
pub kind: ValueKind,
pub span: Span,
}
impl Values {
#[inline]
pub fn new(
name: Ident,
kind: ValueKind,
literals: Vec<(Option<String>, Lit)>,
span: Span,
) -> Self {
Values { name, literals, kind, span }
}
}
pub fn parse_values(attr: &Attribute) -> Result<Values> {
fn is_list_or_named_list(meta: &NestedMeta) -> ValueKind {
match meta {
// catch if the nested value is a literal value
NestedMeta::Lit(_) => ValueKind::List,
// catch if the nested value is a meta value
NestedMeta::Meta(m) => match m {
// path => some quoted value
Meta::Path(_) => ValueKind::List,
Meta::List(_) | Meta::NameValue(_) => ValueKind::EqualsList,
},
}
}
let meta = attr.parse_meta()?;
match meta {
Meta::Path(path) => {
let name = to_ident(path)?;
Ok(Values::new(name, ValueKind::Name, Vec::new(), attr.span()))
}
Meta::List(meta) => {
let name = to_ident(meta.path)?;
let nested = meta.nested;
if nested.is_empty() {
return Err(Error::new(attr.span(), "list cannot be empty"));
}
if is_list_or_named_list(nested.first().unwrap()) == ValueKind::List {
let mut lits = Vec::with_capacity(nested.len());
for meta in nested {
match meta {
// catch if the nested value is a literal value
NestedMeta::Lit(l) => lits.push((None, l)),
// catch if the nested value is a meta value
NestedMeta::Meta(m) => match m {
// path => some quoted value
Meta::Path(path) => {
let i = to_ident(path)?;
lits.push((None, Lit::Str(LitStr::new(&i.to_string(), i.span()))))
}
Meta::List(_) | Meta::NameValue(_) => {
return Err(Error::new(attr.span(), "cannot nest a list; only accept literals and identifiers at this level"))
}
},
}
}
let kind = if lits.len() == 1 { ValueKind::SingleList } else { ValueKind::List };
Ok(Values::new(name, kind, lits, attr.span()))
} else {
let mut lits = Vec::with_capacity(nested.len());
for meta in nested {
match meta {
// catch if the nested value is a literal value
NestedMeta::Lit(_) => {
return Err(Error::new(attr.span(), "key-value pairs expected"))
}
// catch if the nested value is a meta value
NestedMeta::Meta(m) => match m {
Meta::NameValue(n) => {
let name = to_ident(n.path)?.to_string();
let value = n.lit;
lits.push((Some(name), value));
}
Meta::List(_) | Meta::Path(_) => {
return Err(Error::new(attr.span(), "key-value pairs expected"))
}
},
}
}
Ok(Values::new(name, ValueKind::EqualsList, lits, attr.span()))
}
}
Meta::NameValue(meta) => {
let name = to_ident(meta.path)?;
let lit = meta.lit;
Ok(Values::new(name, ValueKind::Equals, vec![(None, lit)], attr.span()))
}
}
}
#[derive(Debug, Clone)]
struct DisplaySlice<'a, T>(&'a [T]);
impl<'a, T: fmt::Display> fmt::Display for DisplaySlice<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut iter = self.0.iter().enumerate();
match iter.next() {
None => f.write_str("nothing")?,
Some((idx, elem)) => {
write!(f, "{}: {}", idx, elem)?;
for (idx, elem) in iter {
f.write_char('\n')?;
write!(f, "{}: {}", idx, elem)?;
}
}
}
Ok(())
}
}
#[inline]
fn is_form_acceptable(expect: &[ValueKind], kind: ValueKind) -> bool {
if expect.contains(&ValueKind::List) && kind == ValueKind::SingleList {
true
} else {
expect.contains(&kind)
}
}
#[inline]
fn validate(values: &Values, forms: &[ValueKind]) -> Result<()> {
if !is_form_acceptable(forms, values.kind) {
return Err(Error::new(
values.span,
// Using the `_args` version here to avoid an allocation.
format_args!("the attribute must be in of these forms:\n{}", DisplaySlice(forms)),
));
}
Ok(())
}
#[inline]
pub fn parse<T: AttributeOption>(values: Values) -> Result<T> {
T::parse(values)
}
pub trait AttributeOption: Sized {
fn parse(values: Values) -> Result<Self>;
}
impl AttributeOption for Vec<String> {
fn parse(values: Values) -> Result<Self> {
validate(&values, &[ValueKind::List])?;
Ok(values.literals.into_iter().map(|(_, l)| l.to_str()).collect())
}
}
impl AttributeOption for String {
#[inline]
fn parse(values: Values) -> Result<Self> {
validate(&values, &[ValueKind::Equals, ValueKind::SingleList])?;
Ok(values.literals[0].1.to_str())
}
}
impl AttributeOption for bool {
#[inline]
fn parse(values: Values) -> Result<Self> {
validate(&values, &[ValueKind::Name, ValueKind::SingleList])?;
Ok(values.literals.get(0).map_or(true, |(_, l)| l.to_bool()))
}
}
impl AttributeOption for Ident {
#[inline]
fn parse(values: Values) -> Result<Self> {
validate(&values, &[ValueKind::SingleList])?;
Ok(values.literals[0].1.to_ident())
}
}
impl AttributeOption for Vec<Ident> {
#[inline]
fn parse(values: Values) -> Result<Self> {
validate(&values, &[ValueKind::List])?;
Ok(values.literals.into_iter().map(|(_, l)| l.to_ident()).collect())
}
}
impl AttributeOption for Option<String> {
fn parse(values: Values) -> Result<Self> {
validate(&values, &[ValueKind::Name, ValueKind::Equals, ValueKind::SingleList])?;
Ok(values.literals.get(0).map(|(_, l)| l.to_str()))
}
}
impl AttributeOption for Arg {
fn parse(values: Values) -> Result<Self> {
validate(&values, &[ValueKind::EqualsList])?;
let mut arg: Arg = Default::default();
for (key, value) in &values.literals {
match key {
Some(s) => match s.as_str() {
"name" => {
arg.name = value.to_str();
}
"description" => {
arg.description = value.to_str();
}
"required" => {
arg.required = value.to_bool();
}
"kind" => arg.kind = ApplicationCommandOptionType::from_str(value.to_str()),
_ => {
return Err(Error::new(key.span(), "unexpected attribute"));
}
},
_ => {
return Err(Error::new(key.span(), "unnamed attribute"));
}
}
}
Ok(arg)
}
}
impl<T: AttributeOption> AttributeOption for AsOption<T> {
#[inline]
fn parse(values: Values) -> Result<Self> {
Ok(AsOption(Some(T::parse(values)?)))
}
}
macro_rules! attr_option_num {
($($n:ty),*) => {
$(
impl AttributeOption for $n {
fn parse(values: Values) -> Result<Self> {
validate(&values, &[ValueKind::SingleList])?;
Ok(match &values.literals[0].1 {
Lit::Int(l) => l.base10_parse::<$n>()?,
l => {
let s = l.to_str();
// Use `as_str` to guide the compiler to use `&str`'s parse method.
// We don't want to use our `parse` method here (`impl AttributeOption for String`).
match s.as_str().parse::<$n>() {
Ok(n) => n,
Err(_) => return Err(Error::new(l.span(), "invalid integer")),
}
}
})
}
}
impl AttributeOption for Option<$n> {
#[inline]
fn parse(values: Values) -> Result<Self> {
<$n as AttributeOption>::parse(values).map(Some)
}
}
)*
}
}
attr_option_num!(u16, u32, usize);