arg macro to define arguments on commands

This commit is contained in:
2021-06-11 10:10:48 +01:00
parent d5d2ac2bee
commit 1286f5f50e
7 changed files with 338 additions and 412 deletions

View File

@ -5,7 +5,7 @@ use syn::parse::{Error, Result};
use syn::spanned::Spanned;
use syn::{Attribute, Ident, Lit, LitStr, Meta, NestedMeta, Path};
use crate::structures::PermissionLevel;
use crate::structures::{ApplicationCommandOptionType, Arg, PermissionLevel};
use crate::util::{AsOption, LitExt};
#[derive(Debug, Clone, Copy, PartialEq)]
@ -19,6 +19,9 @@ pub enum ValueKind {
// #[<name>([<value>, <value>, <value>, ...])]
List,
// #[<name>([<prop> = <value>, <prop> = <value>, ...])]
EqualsList,
// #[<name>(<value>)]
SingleList,
}
@ -29,6 +32,9 @@ impl fmt::Display for ValueKind {
ValueKind::Name => f.pad("`#[<name>]`"),
ValueKind::Equals => f.pad("`#[<name> = <value>]`"),
ValueKind::List => f.pad("`#[<name>([<value>, <value>, <value>, ...])]`"),
ValueKind::EqualsList => {
f.pad("`#[<name>([<prop> = <value>, <prop> = <value>, ...])]`")
}
ValueKind::SingleList => f.pad("`#[<name>(<value>)]`"),
}
}
@ -62,14 +68,19 @@ fn to_ident(p: Path) -> Result<Ident> {
#[derive(Debug)]
pub struct Values {
pub name: Ident,
pub literals: Vec<Lit>,
pub literals: Vec<(Option<String>, Lit)>,
pub kind: ValueKind,
pub span: Span,
}
impl Values {
#[inline]
pub fn new(name: Ident, kind: ValueKind, literals: Vec<Lit>, span: Span) -> Self {
pub fn new(
name: Ident,
kind: ValueKind,
literals: Vec<(Option<String>, Lit)>,
span: Span,
) -> Self {
Values {
name,
literals,
@ -80,6 +91,19 @@ impl Values {
}
pub fn parse_values(attr: &Attribute) -> Result<Values> {
fn is_list_or_named_list(meta: &NestedMeta) -> ValueKind {
match meta {
// catch if the nested value is a literal value
NestedMeta::Lit(_) => ValueKind::List,
// catch if the nested value is a meta value
NestedMeta::Meta(m) => match m {
// path => some quoted value
Meta::Path(_) => ValueKind::List,
Meta::List(_) | Meta::NameValue(_) => ValueKind::EqualsList,
},
}
}
let meta = attr.parse_meta()?;
match meta {
@ -96,36 +120,71 @@ pub fn parse_values(attr: &Attribute) -> Result<Values> {
return Err(Error::new(attr.span(), "list cannot be empty"));
}
let mut lits = Vec::with_capacity(nested.len());
if is_list_or_named_list(nested.first().unwrap()) == ValueKind::List {
let mut lits = Vec::with_capacity(nested.len());
for meta in nested {
match meta {
NestedMeta::Lit(l) => lits.push(l),
NestedMeta::Meta(m) => match m {
Meta::Path(path) => {
let i = to_ident(path)?;
lits.push(Lit::Str(LitStr::new(&i.to_string(), i.span())))
}
Meta::List(_) | Meta::NameValue(_) => {
return Err(Error::new(attr.span(), "cannot nest a list; only accept literals and identifiers at this level"))
}
},
for meta in nested {
match meta {
// catch if the nested value is a literal value
NestedMeta::Lit(l) => lits.push((None, l)),
// catch if the nested value is a meta value
NestedMeta::Meta(m) => match m {
// path => some quoted value
Meta::Path(path) => {
let i = to_ident(path)?;
lits.push((None, Lit::Str(LitStr::new(&i.to_string(), i.span()))))
}
Meta::List(_) | Meta::NameValue(_) => {
return Err(Error::new(attr.span(), "cannot nest a list; only accept literals and identifiers at this level"))
}
},
}
}
}
let kind = if lits.len() == 1 {
ValueKind::SingleList
let kind = if lits.len() == 1 {
ValueKind::SingleList
} else {
ValueKind::List
};
Ok(Values::new(name, kind, lits, attr.span()))
} else {
ValueKind::List
};
let mut lits = Vec::with_capacity(nested.len());
Ok(Values::new(name, kind, lits, attr.span()))
for meta in nested {
match meta {
// catch if the nested value is a literal value
NestedMeta::Lit(_) => {
return Err(Error::new(attr.span(), "key-value pairs expected"))
}
// catch if the nested value is a meta value
NestedMeta::Meta(m) => match m {
Meta::NameValue(n) => {
let name = to_ident(n.path)?.to_string();
let value = n.lit;
lits.push((Some(name), value));
}
Meta::List(_) | Meta::Path(_) => {
return Err(Error::new(attr.span(), "key-value pairs expected"))
}
},
}
}
Ok(Values::new(name, ValueKind::EqualsList, lits, attr.span()))
}
}
Meta::NameValue(meta) => {
let name = to_ident(meta.path)?;
let lit = meta.lit;
Ok(Values::new(name, ValueKind::Equals, vec![lit], attr.span()))
Ok(Values::new(
name,
ValueKind::Equals,
vec![(None, lit)],
attr.span(),
))
}
}
}
@ -194,7 +253,7 @@ impl AttributeOption for Vec<String> {
Ok(values
.literals
.into_iter()
.map(|lit| lit.to_str())
.map(|(_, l)| l.to_str())
.collect())
}
}
@ -204,7 +263,7 @@ impl AttributeOption for String {
fn parse(values: Values) -> Result<Self> {
validate(&values, &[ValueKind::Equals, ValueKind::SingleList])?;
Ok(values.literals[0].to_str())
Ok(values.literals[0].1.to_str())
}
}
@ -213,7 +272,7 @@ impl AttributeOption for bool {
fn parse(values: Values) -> Result<Self> {
validate(&values, &[ValueKind::Name, ValueKind::SingleList])?;
Ok(values.literals.get(0).map_or(true, |l| l.to_bool()))
Ok(values.literals.get(0).map_or(true, |(_, l)| l.to_bool()))
}
}
@ -222,7 +281,7 @@ impl AttributeOption for Ident {
fn parse(values: Values) -> Result<Self> {
validate(&values, &[ValueKind::SingleList])?;
Ok(values.literals[0].to_ident())
Ok(values.literals[0].1.to_ident())
}
}
@ -231,7 +290,11 @@ impl AttributeOption for Vec<Ident> {
fn parse(values: Values) -> Result<Self> {
validate(&values, &[ValueKind::List])?;
Ok(values.literals.into_iter().map(|l| l.to_ident()).collect())
Ok(values
.literals
.into_iter()
.map(|(_, l)| l.to_ident())
.collect())
}
}
@ -242,7 +305,7 @@ impl AttributeOption for Option<String> {
&[ValueKind::Name, ValueKind::Equals, ValueKind::SingleList],
)?;
Ok(values.literals.get(0).map(|l| l.to_str()))
Ok(values.literals.get(0).map(|(_, l)| l.to_str()))
}
}
@ -253,11 +316,47 @@ impl AttributeOption for PermissionLevel {
Ok(values
.literals
.get(0)
.map(|l| PermissionLevel::from_str(&*l.to_str()).unwrap())
.map(|(_, l)| PermissionLevel::from_str(&*l.to_str()).unwrap())
.unwrap())
}
}
impl AttributeOption for Arg {
fn parse(values: Values) -> Result<Self> {
validate(&values, &[ValueKind::EqualsList])?;
let mut arg: Arg = Default::default();
for (key, value) in &values.literals {
match key {
Some(s) => match s.as_str() {
"name" => {
arg.name = value.to_str();
}
"description" => {
arg.description = value.to_str();
}
"required" => {
arg.required = value.to_bool();
}
"default" => {
arg.default = value.to_bool();
}
"kind" => arg.kind = ApplicationCommandOptionType::from_str(value.to_str()),
_ => {
return Err(Error::new(key.span(), "unexpected attribute"));
}
},
_ => {
return Err(Error::new(key.span(), "unnamed attribute"));
}
}
}
Ok(arg)
}
}
impl<T: AttributeOption> AttributeOption for AsOption<T> {
#[inline]
fn parse(values: Values) -> Result<Self> {
@ -272,7 +371,7 @@ macro_rules! attr_option_num {
fn parse(values: Values) -> Result<Self> {
validate(&values, &[ValueKind::SingleList])?;
Ok(match &values.literals[0] {
Ok(match &values.literals[0].1 {
Lit::Int(l) => l.base10_parse::<$n>()?,
l => {
let s = l.to_str();

View File

@ -1,5 +1,6 @@
pub mod suffixes {
pub const COMMAND: &str = "COMMAND";
pub const ARG: &str = "ARG";
}
pub use self::suffixes::*;

View File

@ -2,6 +2,7 @@
#![deny(broken_intra_doc_links)]
use proc_macro::TokenStream;
use proc_macro2::Ident;
use quote::quote;
use syn::{parse::Error, parse_macro_input, parse_quote, spanned::Spanned, Lit};
@ -32,61 +33,6 @@ macro_rules! match_options {
};
}
/// The heart of the attribute-based framework.
///
/// This is a function attribute macro. Using this on other Rust constructs won't work.
///
/// ## Options
///
/// To alter how the framework will interpret the command,
/// you can provide options as attributes following this `#[command]` macro.
///
/// Each option has its own kind of data to stock and manipulate with.
/// They're given to the option either with the `#[option(...)]` or `#[option = ...]` syntaxes.
/// If an option doesn't require for any data to be supplied, then it's simply an empty `#[option]`.
///
/// If the input to the option is malformed, the macro will give you can error, describing
/// the correct method for passing data, and what it should be.
///
/// The list of available options, is, as follows:
///
/// | Syntax | Description | Argument explanation |
/// | ---------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
/// | `#[checks(identifiers)]` | Preconditions that must met before the command's execution. | `identifiers` is a comma separated list of identifiers referencing functions marked by the `#[check]` macro |
/// | `#[aliases(names)]` | Alternative names to refer to this command. | `names` is a comma separated list of desired aliases. |
/// | `#[description(desc)]` </br> `#[description = desc]` | The command's description or summary. | `desc` is a string describing the command. |
/// | `#[usage(use)]` </br> `#[usage = use]` | The command's intended usage. | `use` is a string stating the schema for the command's usage. |
/// | `#[example(ex)]` </br> `#[example = ex]` | An example of the command's usage. May be called multiple times to add many examples at once. | `ex` is a string |
/// | `#[delimiters(delims)]` | Argument delimiters specific to this command. Overrides the global list of delimiters in the framework. | `delims` is a comma separated list of strings |
/// | `#[min_args(min)]` </br> `#[max_args(max)]` </br> `#[num_args(min_and_max)]` | The expected length of arguments that the command must receive in order to function correctly. | `min`, `max` and `min_and_max` are 16-bit, unsigned integers. |
/// | `#[required_permissions(perms)]` | Set of permissions the user must possess. | `perms` is a comma separated list of permission names.</br> These can be found at [Discord's official documentation](https://discord.com/developers/docs/topics/permissions). |
/// | `#[allowed_roles(roles)]` | Set of roles the user must possess. | `roles` is a comma separated list of role names. |
/// | `#[help_available]` </br> `#[help_available(b)]` | If the command should be displayed in the help message. | `b` is a boolean. If no boolean is provided, the value is assumed to be `true`. |
/// | `#[only_in(ctx)]` | Which environment the command can be executed in. | `ctx` is a string with the accepted values `guild`/`guilds` and `dm`/`dms` (Direct Message). |
/// | `#[bucket(name)]` </br> `#[bucket = name]` | What bucket will impact this command. | `name` is a string containing the bucket's name.</br> Refer to [the bucket example in the standard framework](https://docs.rs/serenity/*/serenity/framework/standard/struct.StandardFramework.html#method.bucket) for its usage. |
/// | `#[owners_only]` </br> `#[owners_only(b)]` | If this command is exclusive to owners. | `b` is a boolean. If no boolean is provided, the value is assumed to be `true`. |
/// | `#[owner_privilege]` </br> `#[owner_privilege(b)]` | If owners can bypass certain options. | `b` is a boolean. If no boolean is provided, the value is assumed to be `true`. |
/// | `#[sub_commands(commands)]` | The sub or children commands of this command. They are executed in the form: `this-command sub-command`. | `commands` is a comma separated list of identifiers referencing functions marked by the `#[command]` macro. |
///
/// Documentation comments (`///`) applied onto the function are interpreted as sugar for the
/// `#[description]` option. When more than one application of the option is performed,
/// the text is delimited by newlines. This mimics the behaviour of regular doc-comments,
/// which are sugar for the `#[doc = "..."]` attribute. If you wish to join lines together,
/// however, you have to end the previous lines with `\$`.
///
/// # Notes
/// The name of the command is parsed from the applied function,
/// or may be specified inside the `#[command]` attribute, a lá `#[command("foobar")]`.
///
/// This macro attribute generates static instances of `Command` and `CommandOptions`,
/// conserving the provided options.
///
/// The names of the instances are all uppercased names of the command name.
/// For example, with a name of "foo":
/// ```rust,ignore
/// pub static FOO_COMMAND_OPTIONS: CommandOptions = CommandOptions { ... };
/// pub static FOO_COMMAND: Command = Command { options: FOO_COMMAND_OPTIONS, ... };
/// ```
#[proc_macro_attribute]
pub fn command(attr: TokenStream, input: TokenStream) -> TokenStream {
let mut fun = parse_macro_input!(input as CommandFun);
@ -107,6 +53,9 @@ pub fn command(attr: TokenStream, input: TokenStream) -> TokenStream {
let name = &name[..];
match name {
"arg" => options
.cmd_args
.push(propagate_err!(attributes::parse(values))),
"example" => {
options
.examples
@ -134,6 +83,7 @@ pub fn command(attr: TokenStream, input: TokenStream) -> TokenStream {
examples,
required_permissions,
allow_slash,
mut cmd_args,
} = options;
propagate_err!(create_declaration_validations(&mut fun));
@ -151,11 +101,47 @@ pub fn command(attr: TokenStream, input: TokenStream) -> TokenStream {
let cooked = fun.cooked.clone();
let command_path = quote!(crate::framework::Command);
let arg_path = quote!(crate::framework::Arg);
populate_fut_lifetimes_on_refs(&mut fun.args);
let args = fun.args;
(quote! {
let arg_idents = cmd_args
.iter()
.map(|arg| n.with_suffix(arg.name.as_str()).with_suffix(ARG))
.collect::<Vec<Ident>>();
let mut tokens = cmd_args
.iter_mut()
.map(|arg| {
let Arg {
name,
description,
kind,
required,
default,
} = arg;
let an = n.with_suffix(name.as_str()).with_suffix(ARG);
quote! {
#(#cooked)*
#[allow(missing_docs)]
pub static #an: #arg_path = #arg_path {
name: #name,
description: #description,
required: #required,
default: #default,
kind: #kind,
};
}
})
.fold(quote! {}, |mut a, b| {
a.extend(b);
a
});
tokens.extend(quote! {
#(#cooked)*
#[allow(missing_docs)]
pub static #n: #command_path = #command_path {
@ -166,6 +152,7 @@ pub fn command(attr: TokenStream, input: TokenStream) -> TokenStream {
examples: &[#(#examples),*],
required_permissions: #required_permissions,
allow_slash: #allow_slash,
args: &[#(&#arg_idents),*],
};
#(#cooked)*
@ -179,163 +166,7 @@ pub fn command(attr: TokenStream, input: TokenStream) -> TokenStream {
_output
}.boxed()
}
})
.into()
}
/// A macro that transforms `async` functions (and closures) into plain functions, whose
/// return type is a boxed [`Future`].
///
/// # Transformation
///
/// The macro transforms an `async` function, which may look like this:
///
/// ```rust,no_run
/// async fn foo(n: i32) -> i32 {
/// n + 4
/// }
/// ```
///
/// into this (some details omitted):
///
/// ```rust,no_run
/// use std::future::Future;
/// use std::pin::Pin;
///
/// fn foo(n: i32) -> Pin<Box<dyn std::future::Future<Output = i32>>> {
/// Box::pin(async move {
/// n + 4
/// })
/// }
/// ```
///
/// This transformation also applies to closures, which are converted more simply. For instance,
/// this closure:
///
/// ```rust,no_run
/// # #![feature(async_closure)]
/// #
/// async move |x: i32| {
/// x * 2 + 4
/// }
/// # ;
/// ```
///
/// is changed to:
///
/// ```rust,no_run
/// |x: i32| {
/// Box::pin(async move {
/// x * 2 + 4
/// })
/// }
/// # ;
/// ```
///
/// ## How references are handled
///
/// When a function contains references, their lifetimes are constrained to the returned
/// [`Future`]. If the above `foo` function had `&i32` as a parameter, the transformation would be
/// instead this:
///
/// ```rust,no_run
/// use std::future::Future;
/// use std::pin::Pin;
///
/// fn foo<'fut>(n: &'fut i32) -> Pin<Box<dyn std::future::Future<Output = i32> + 'fut>> {
/// Box::pin(async move {
/// *n + 4
/// })
/// }
/// ```
///
/// Explicitly specifying lifetimes (in the parameters or in the return type) or complex usage of
/// lifetimes (e.g. `'a: 'b`) is not supported.
///
/// # Necessity for the macro
///
/// The macro performs the transformation to permit the framework to store and invoke the functions.
///
/// Functions marked with the `async` keyword will wrap their return type with the [`Future`] trait,
/// which a state-machine generated by the compiler for the function will implement. This complicates
/// matters for the framework, as [`Future`] is a trait. Depending on a type that implements a trait
/// is done with two methods in Rust:
///
/// 1. static dispatch - generics
/// 2. dynamic dispatch - trait objects
///
/// First method is infeasible for the framework. Typically, the framework will contain a plethora
/// of different commands that will be stored in a single list. And due to the nature of generics,
/// generic types can only resolve to a single concrete type. If commands had a generic type for
/// their function's return type, the framework would be unable to store commands, as only a single
/// [`Future`] type from one of the commands would get resolved, preventing other commands from being
/// stored.
///
/// Second method involves heap allocations, but is the only working solution. If a trait is
/// object-safe (which [`Future`] is), the compiler can generate a table of function pointers
/// (a vtable) that correspond to certain implementations of the trait. This allows to decide
/// which implementation to use at runtime. Thus, we can use the interface for the [`Future`] trait,
/// and avoid depending on the underlying value (such as its size). To opt-in to dynamic dispatch,
/// trait objects must be used with a pointer, like references (`&` and `&mut`) or `Box`. The
/// latter is what's used by the macro, as the ownership of the value (the state-machine) must be
/// given to the caller, the framework in this case.
///
/// The macro exists to retain the normal syntax of `async` functions (and closures), while
/// granting the user the ability to pass those functions to the framework, like command functions
/// and hooks (`before`, `after`, `on_dispatch_error`, etc.).
///
/// # Notes
///
/// If applying the macro on an `async` closure, you will need to enable the `async_closure`
/// feature. Inputs to procedural macro attributes must be valid Rust code, and `async`
/// closures are not stable yet.
///
/// [`Future`]: std::future::Future
#[proc_macro_attribute]
pub fn hook(_attr: TokenStream, input: TokenStream) -> TokenStream {
let hook = parse_macro_input!(input as Hook);
match hook {
Hook::Function(mut fun) => {
let cooked = fun.cooked;
let visibility = fun.visibility;
let fun_name = fun.name;
let body = fun.body;
let ret = fun.ret;
populate_fut_lifetimes_on_refs(&mut fun.args);
let args = fun.args;
(quote! {
#(#cooked)*
#[allow(missing_docs)]
#visibility fn #fun_name<'fut>(#(#args),*) -> ::serenity::futures::future::BoxFuture<'fut, #ret> {
use ::serenity::futures::future::FutureExt;
async move {
let _output: #ret = { #(#body)* };
#[allow(unreachable_code)]
_output
}.boxed()
}
})
.into()
}
Hook::Closure(closure) => {
let cooked = closure.cooked;
let args = closure.args;
let ret = closure.ret;
let body = closure.body;
(quote! {
#(#cooked)*
|#args| #ret {
use ::serenity::futures::future::FutureExt;
async move { #body }.boxed()
}
})
.into()
}
}
});
tokens.into()
}

View File

@ -1,14 +1,10 @@
use std::str::FromStr;
use proc_macro2::TokenStream as TokenStream2;
use quote::{quote, ToTokens};
use syn::{
braced,
parse::{Error, Parse, ParseStream, Result},
punctuated::Punctuated,
spanned::Spanned,
Attribute, Block, Expr, ExprClosure, FnArg, Ident, Pat, ReturnType, Stmt, Token, Type,
Visibility,
Attribute, Block, FnArg, Ident, Pat, ReturnType, Stmt, Token, Type, Visibility,
};
use crate::util::{self, Argument, AsOption, Parenthesised};
@ -169,115 +165,6 @@ impl ToTokens for CommandFun {
}
}
#[derive(Debug)]
pub struct FunctionHook {
/// `#[...]`-style attributes.
pub attributes: Vec<Attribute>,
/// Populated by cooked attributes. These are attributes outside of the realm of this crate's procedural macros
/// and will appear in generated output.
pub cooked: Vec<Attribute>,
pub visibility: Visibility,
pub name: Ident,
pub args: Vec<Argument>,
pub ret: Type,
pub body: Vec<Stmt>,
}
#[derive(Debug)]
pub struct ClosureHook {
/// `#[...]`-style attributes.
pub attributes: Vec<Attribute>,
/// Populated by cooked attributes. These are attributes outside of the realm of this crate's procedural macros
/// and will appear in generated output.
pub cooked: Vec<Attribute>,
pub args: Punctuated<Pat, Token![,]>,
pub ret: ReturnType,
pub body: Box<Expr>,
}
#[derive(Debug)]
pub enum Hook {
Function(FunctionHook),
Closure(ClosureHook),
}
impl Parse for Hook {
fn parse(input: ParseStream<'_>) -> Result<Self> {
let mut attributes = input.call(Attribute::parse_outer)?;
let cooked = remove_cooked(&mut attributes);
if is_function(input) {
parse_function_hook(input, attributes, cooked).map(Self::Function)
} else {
parse_closure_hook(input, attributes, cooked).map(Self::Closure)
}
}
}
fn is_function(input: ParseStream<'_>) -> bool {
input.peek(Token![pub]) || (input.peek(Token![async]) && input.peek2(Token![fn]))
}
fn parse_function_hook(
input: ParseStream<'_>,
attributes: Vec<Attribute>,
cooked: Vec<Attribute>,
) -> Result<FunctionHook> {
let visibility = input.parse::<Visibility>()?;
input.parse::<Token![async]>()?;
input.parse::<Token![fn]>()?;
let name = input.parse()?;
// (...)
let Parenthesised(args) = input.parse::<Parenthesised<FnArg>>()?;
let ret = match input.parse::<ReturnType>()? {
ReturnType::Type(_, t) => (*t).clone(),
ReturnType::Default => {
Type::Verbatim(TokenStream2::from_str("()").expect("Invalid str to create `()`-type"))
}
};
// { ... }
let bcont;
braced!(bcont in input);
let body = bcont.call(Block::parse_within)?;
let args = args
.into_iter()
.map(parse_argument)
.collect::<Result<Vec<_>>>()?;
Ok(FunctionHook {
attributes,
cooked,
visibility,
name,
args,
ret,
body,
})
}
fn parse_closure_hook(
input: ParseStream<'_>,
attributes: Vec<Attribute>,
cooked: Vec<Attribute>,
) -> Result<ClosureHook> {
input.parse::<Token![async]>()?;
let closure = input.parse::<ExprClosure>()?;
Ok(ClosureHook {
attributes,
cooked,
args: closure.inputs,
ret: closure.output,
body: closure.body,
})
}
#[derive(Debug)]
pub enum PermissionLevel {
Unrestricted,
@ -327,14 +214,89 @@ impl ToTokens for PermissionLevel {
}
}
#[derive(Debug)]
pub(crate) enum ApplicationCommandOptionType {
SubCommand,
SubCommandGroup,
String,
Integer,
Boolean,
User,
Channel,
Role,
Mentionable,
Unknown,
}
impl ApplicationCommandOptionType {
pub fn from_str(s: String) -> Self {
match s.as_str() {
"SubCommand" => Self::SubCommand,
"SubCommandGroup" => Self::SubCommandGroup,
"String" => Self::String,
"Integer" => Self::Integer,
"Boolean" => Self::Boolean,
"User" => Self::User,
"Channel" => Self::Channel,
"Role" => Self::Role,
"Mentionable" => Self::Mentionable,
_ => Self::Unknown,
}
}
}
impl ToTokens for ApplicationCommandOptionType {
fn to_tokens(&self, stream: &mut TokenStream2) {
let path = quote!(serenity::model::interactions::ApplicationCommandOptionType);
let variant = match self {
ApplicationCommandOptionType::SubCommand => quote!(SubCommand),
ApplicationCommandOptionType::SubCommandGroup => quote!(SubCommandGroup),
ApplicationCommandOptionType::String => quote!(String),
ApplicationCommandOptionType::Integer => quote!(Integer),
ApplicationCommandOptionType::Boolean => quote!(Boolean),
ApplicationCommandOptionType::User => quote!(User),
ApplicationCommandOptionType::Channel => quote!(Channel),
ApplicationCommandOptionType::Role => quote!(Role),
ApplicationCommandOptionType::Mentionable => quote!(Mentionable),
ApplicationCommandOptionType::Unknown => quote!(Unknown),
};
stream.extend(quote! {
#path::#variant
});
}
}
#[derive(Debug)]
pub(crate) struct Arg {
pub name: String,
pub description: String,
pub kind: ApplicationCommandOptionType,
pub required: bool,
pub default: bool,
}
impl Default for Arg {
fn default() -> Self {
Self {
name: String::new(),
description: String::new(),
kind: ApplicationCommandOptionType::String,
required: false,
default: false,
}
}
}
#[derive(Debug, Default)]
pub struct Options {
pub(crate) struct Options {
pub aliases: Vec<String>,
pub description: AsOption<String>,
pub usage: AsOption<String>,
pub examples: Vec<String>,
pub required_permissions: PermissionLevel,
pub allow_slash: bool,
pub cmd_args: Vec<Arg>,
}
impl Options {